{"title":"Continued fractions and Hardy sums","authors":"Alessandro Lägeler","doi":"10.1007/s12188-024-00283-3","DOIUrl":null,"url":null,"abstract":"<div><p>The classical Dedekind sums <i>s</i>(<i>d</i>, <i>c</i>) can be represented as sums over the partial quotients of the continued fraction expansion of the rational <span>\\(\\frac{d}{c}\\)</span>. Hardy sums, the analog integer-valued sums arising in the transformation of the logarithms of <span>\\(\\theta \\)</span>-functions under a subgroup of the modular group, have been shown to satisfy many properties which mirror the properties of the classical Dedekind sums. The representation as sums of partial quotients has, however, been missing so far. We define non-classical continued fractions and prove that Hardy sums can be expressed as a sums of partial quotients of these continued fractions. As an application, we prove that the graph of the Hardy sums is dense in <span>\\(\\textbf{R}\\times \\textbf{Z}\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 2","pages":"107 - 128"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12188-024-00283-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00283-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The classical Dedekind sums s(d, c) can be represented as sums over the partial quotients of the continued fraction expansion of the rational \(\frac{d}{c}\). Hardy sums, the analog integer-valued sums arising in the transformation of the logarithms of \(\theta \)-functions under a subgroup of the modular group, have been shown to satisfy many properties which mirror the properties of the classical Dedekind sums. The representation as sums of partial quotients has, however, been missing so far. We define non-classical continued fractions and prove that Hardy sums can be expressed as a sums of partial quotients of these continued fractions. As an application, we prove that the graph of the Hardy sums is dense in \(\textbf{R}\times \textbf{Z}\).
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.