A radiative transfer model for characterizing photometric and polarimetric properties of leaf reflection: Combination of PROSPECT and a polarized reflection function

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Xiao Li, Zhongqiu Sun, Shan Lu, Kenji Omasa
{"title":"A radiative transfer model for characterizing photometric and polarimetric properties of leaf reflection: Combination of PROSPECT and a polarized reflection function","authors":"Xiao Li, Zhongqiu Sun, Shan Lu, Kenji Omasa","doi":"10.1016/j.rse.2024.114559","DOIUrl":null,"url":null,"abstract":"Light photometric and polarimetric characteristics are crucial for describing the optical properties of leaf reflections, which play an essential role in investigating biochemical and surface structural trait inversion and radiative balance between vegetation and atmospheric system. Although several physical models are available, research on a comprehensive model that accounts for both photometric and polarimetric characteristics and incorporates biochemical and surface structural traits is still inadequate. In this study, we introduced PROPOLAR, a leaf model that considered leaf reflection in terms of polarized and unpolarized components and linked leaf reflection to leaf traits. PROPOLAR employed PROSPECT to simulate non-polarized component associated with biochemical traits, while used a three-parameter function (linear coefficient, refractive index factor, and roughness of leaf surface) to simulate the polarized component. The model was validated using a dataset (composed of both photometric and polarimetric measurements) collected from 533 samples of 13 plant species under various illumination-viewing geometries. The results showed that PROPOLAR outperformed PROSPECT and PROSPECULAR (a leaf model charactering BRF) in simulating light intensity (R<sup>2</sup> = 0.98), and effectively simulated bidirectional polarization reflectance factor (BPRF) and degree of linear polarization (Dolp) across a wide spectral range (450–2300 nm) and species, with R<sup>2</sup> = 0.92, and 0.80, respectively. Furthermore, PROPOLAR enhanced the accuracy of PROSPECT and showed comparable accuracy with PROSPECULAR in the inversion of biochemical traits from the multi-angular polarization measurements, including chlorophyll (R<sup>2</sup> = 0.89, RMSE = 12.83 μg/cm<sup>2</sup>), equivalent water thickness (R<sup>2</sup> = 0.90, RMSE = 0.0032 g/cm<sup>2</sup>), and leaf mass per area (R<sup>2</sup> = 0.38, RMSE = 0.0031 g/cm<sup>2</sup>), due to the incorporation of polarization reflection and a linear coefficient during calibration. Notably, PROPOLAR can invert roughness and showed reasonable consistency with measured roughness (R<sup>2</sup> = 0.61). These results demonstrated the effectiveness of PROPOLAR in simulating both photometric and polarimetric properties of leaf reflection, as well as its potential for biochemical and surface structural trait inversion. PROPOLAR may advance remote sensing applications in vegetation management by integrating photometric and polarimetric properties.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"14 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114559","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Light photometric and polarimetric characteristics are crucial for describing the optical properties of leaf reflections, which play an essential role in investigating biochemical and surface structural trait inversion and radiative balance between vegetation and atmospheric system. Although several physical models are available, research on a comprehensive model that accounts for both photometric and polarimetric characteristics and incorporates biochemical and surface structural traits is still inadequate. In this study, we introduced PROPOLAR, a leaf model that considered leaf reflection in terms of polarized and unpolarized components and linked leaf reflection to leaf traits. PROPOLAR employed PROSPECT to simulate non-polarized component associated with biochemical traits, while used a three-parameter function (linear coefficient, refractive index factor, and roughness of leaf surface) to simulate the polarized component. The model was validated using a dataset (composed of both photometric and polarimetric measurements) collected from 533 samples of 13 plant species under various illumination-viewing geometries. The results showed that PROPOLAR outperformed PROSPECT and PROSPECULAR (a leaf model charactering BRF) in simulating light intensity (R2 = 0.98), and effectively simulated bidirectional polarization reflectance factor (BPRF) and degree of linear polarization (Dolp) across a wide spectral range (450–2300 nm) and species, with R2 = 0.92, and 0.80, respectively. Furthermore, PROPOLAR enhanced the accuracy of PROSPECT and showed comparable accuracy with PROSPECULAR in the inversion of biochemical traits from the multi-angular polarization measurements, including chlorophyll (R2 = 0.89, RMSE = 12.83 μg/cm2), equivalent water thickness (R2 = 0.90, RMSE = 0.0032 g/cm2), and leaf mass per area (R2 = 0.38, RMSE = 0.0031 g/cm2), due to the incorporation of polarization reflection and a linear coefficient during calibration. Notably, PROPOLAR can invert roughness and showed reasonable consistency with measured roughness (R2 = 0.61). These results demonstrated the effectiveness of PROPOLAR in simulating both photometric and polarimetric properties of leaf reflection, as well as its potential for biochemical and surface structural trait inversion. PROPOLAR may advance remote sensing applications in vegetation management by integrating photometric and polarimetric properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信