Erick Rógenes, Ian Torras Paes, Bruno Guimarães Delgado, Rafael Jabur Bittar, Alessandra dos Santos Gomes, Alessandro Cirone, Alomir H. Fávero Neto, Leandro Lima Rasmussen
{"title":"Assessing Static Liquefaction Triggers in Tailings Dams Using the Critical State Constitutive Models CASM and NorSand","authors":"Erick Rógenes, Ian Torras Paes, Bruno Guimarães Delgado, Rafael Jabur Bittar, Alessandra dos Santos Gomes, Alessandro Cirone, Alomir H. Fávero Neto, Leandro Lima Rasmussen","doi":"10.1002/nag.3914","DOIUrl":null,"url":null,"abstract":"Static liquefaction‐induced failure in tailings dams can result in extensive economic and environmental damage. In practice, the use of constitutive models capable of capturing this phenomenon and assessing structures susceptible to liquefaction is increasing. Numerous constitutive models exist and have been applied to model static liquefaction of tailings materials, but the extent of the influence exerted by the choice of constitutive model on analysis outcomes remains to be determined. This study addresses this uncertainty by employing the Clay and Sand Model (CASM) and NorSand models to analyze the well‐documented case of the B1 dam failure in Brazil. Initially, a back analysis of the failure was conducted, and further analyses were carried out by simulating hypothetical triggers: crest loading and increased gravity. The influence of the adopted constitutive model on results was analyzed through the failure mechanisms generated, stress paths, and levels of disturbances necessary to trigger liquefaction. Both models produced compatible failure mechanisms, with slight differences observed in the level of disturbance required to trigger liquefaction. The results obtained from the B1 case indicate that the most important aspect related to the constitutive model in assessing structures susceptible to static liquefaction lies in the constitutive model's capacity to represent the sudden strength loss due to pore pressure generation, while the particular formulations employed in each method tend to be a secondary consideration in the analysis.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"13 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3914","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Static liquefaction‐induced failure in tailings dams can result in extensive economic and environmental damage. In practice, the use of constitutive models capable of capturing this phenomenon and assessing structures susceptible to liquefaction is increasing. Numerous constitutive models exist and have been applied to model static liquefaction of tailings materials, but the extent of the influence exerted by the choice of constitutive model on analysis outcomes remains to be determined. This study addresses this uncertainty by employing the Clay and Sand Model (CASM) and NorSand models to analyze the well‐documented case of the B1 dam failure in Brazil. Initially, a back analysis of the failure was conducted, and further analyses were carried out by simulating hypothetical triggers: crest loading and increased gravity. The influence of the adopted constitutive model on results was analyzed through the failure mechanisms generated, stress paths, and levels of disturbances necessary to trigger liquefaction. Both models produced compatible failure mechanisms, with slight differences observed in the level of disturbance required to trigger liquefaction. The results obtained from the B1 case indicate that the most important aspect related to the constitutive model in assessing structures susceptible to static liquefaction lies in the constitutive model's capacity to represent the sudden strength loss due to pore pressure generation, while the particular formulations employed in each method tend to be a secondary consideration in the analysis.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.