Tf2O-Induced Selective 1,3-Transposition/Cyclization of Ynones in DMF

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Huilin Lan, Wenting Liu, Wen Liu, Jiajian Peng, Ying Bai, Xinxin Shao
{"title":"Tf2O-Induced Selective 1,3-Transposition/Cyclization of Ynones in DMF","authors":"Huilin Lan, Wenting Liu, Wen Liu, Jiajian Peng, Ying Bai, Xinxin Shao","doi":"10.1039/d4qo01890g","DOIUrl":null,"url":null,"abstract":"A chemo and regio-selective system for activating C=O and S=O bonds under transition metal-free conditions is described. Thus, a Tf2O-mediated 1,3-transposition of ynones in DMF has been developed, providing a versatile pathway for the downstream synthesis of diverse five- and seven-membered heterocycles. Furthermore, the catalytic migration of carbonyl functionality conjugated to an alkyne unit is investigated. In the presence of sulfoxide, which undergoes a Pummerer reaction, the in-situ generation of highly reactive sulfonium salts enables efficient access to a wide range of sulfur-containing annulated scaffolds. Importantly, 3-SCF2D chromones were obtained in high yields and D-incorporation. This divergent methodology offers a versatile platform for maximizing molecular complexity and diversity.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"10 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo01890g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

A chemo and regio-selective system for activating C=O and S=O bonds under transition metal-free conditions is described. Thus, a Tf2O-mediated 1,3-transposition of ynones in DMF has been developed, providing a versatile pathway for the downstream synthesis of diverse five- and seven-membered heterocycles. Furthermore, the catalytic migration of carbonyl functionality conjugated to an alkyne unit is investigated. In the presence of sulfoxide, which undergoes a Pummerer reaction, the in-situ generation of highly reactive sulfonium salts enables efficient access to a wide range of sulfur-containing annulated scaffolds. Importantly, 3-SCF2D chromones were obtained in high yields and D-incorporation. This divergent methodology offers a versatile platform for maximizing molecular complexity and diversity.
介绍了一种在无过渡金属条件下活化 C=O 和 S=O 键的化学和区域选择性系统。因此,开发出了一种 Tf2O 介导的 1,3-炔酮在 DMF 中的反式合成方法,为下游合成各种五元和七元杂环提供了多用途途径。此外,还研究了与炔单元共轭的羰基官能团的催化迁移。在发生 Pummerer 反应的亚砜存在下,原位生成的高活性锍盐能够有效地获得各种含硫环状支架。重要的是,3-SCF2D 色酮可以高产率和 D-incorporation方式获得。这种不同的方法为最大限度地提高分子的复杂性和多样性提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信