〈110〉{1̄10} edge dislocations in strontium titanate: Charged vs neutral, glide vs climb

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pierre Hirel, Patrick Cordier, Philippe Carrez
{"title":"〈110〉{1̄10} edge dislocations in strontium titanate: Charged vs neutral, glide vs climb","authors":"Pierre Hirel, Patrick Cordier, Philippe Carrez","doi":"10.1016/j.actamat.2024.120636","DOIUrl":null,"url":null,"abstract":"The ductile deformation of strontium titanate SrTiO<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\" /&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math></script></span> at low temperature (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;&amp;#x2A85;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1000&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 4040.6 1196.3\" width=\"9.385ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(982,0)\"><use xlink:href=\"#MJAMS-2A85\"></use></g><g is=\"true\" transform=\"translate(2038,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">⪅</mo><mn is=\"true\">1000</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">T</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">⪅</mo><mn is=\"true\">1000</mn></mrow></math></script></span> K) is commonly associated with the activity of dislocations gliding in <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;{&lt;/mo&gt;&lt;mn is=\"true\"&gt;110&lt;/mn&gt;&lt;mo is=\"true\"&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2502.5 1196.3\" width=\"5.812ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-7B\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(2002,0)\"><use xlink:href=\"#MJMAIN-7D\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">110</mn><mo is=\"true\">}</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">110</mn><mo is=\"true\">}</mo></mrow></math></script></span> slip planes. While dislocations with pure screw character keep essentially the same dissociated core structure in the whole temperature range, dislocations with edge character may adopt different atomic configurations, associated with different charge states and different mobilities. In this work we use atomic-scale simulations to investigate the core structure of charged and neutral edge dislocations. We report a new possible dislocation core that is charge-neutral, dissociated, and with the lowest Peierls stress reported so far, thus making it an efficient component of plastic deformation. In comparison, dislocations carrying a positive charge are slightly less mobile, while those with negative charge have a very low mobility. Our results indicate that glide of charge-neutral dislocations is favoured, and that they may locally acquire a charge by interacting with vacancies all while remaining glissile. Finally, we investigate edge dislocations that are dissociated in their climb plane, and confirm that they are energetically more favourable than their glissile counterparts. Computing the activation energy for the core transformation provides insight into the ductile–brittle transition.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"245 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120636","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ductile deformation of strontium titanate SrTiO3 at low temperature (T1000 K) is commonly associated with the activity of dislocations gliding in {110} slip planes. While dislocations with pure screw character keep essentially the same dissociated core structure in the whole temperature range, dislocations with edge character may adopt different atomic configurations, associated with different charge states and different mobilities. In this work we use atomic-scale simulations to investigate the core structure of charged and neutral edge dislocations. We report a new possible dislocation core that is charge-neutral, dissociated, and with the lowest Peierls stress reported so far, thus making it an efficient component of plastic deformation. In comparison, dislocations carrying a positive charge are slightly less mobile, while those with negative charge have a very low mobility. Our results indicate that glide of charge-neutral dislocations is favoured, and that they may locally acquire a charge by interacting with vacancies all while remaining glissile. Finally, we investigate edge dislocations that are dissociated in their climb plane, and confirm that they are energetically more favourable than their glissile counterparts. Computing the activation energy for the core transformation provides insight into the ductile–brittle transition.
钛酸锶 SrTiO33 在低温(T⪅1000T⪅1000 K)下的韧性变形通常与位错在{110}{110}滑移面中滑动的活动有关。具有纯螺钉特性的位错在整个温度范围内基本上保持相同的离析核心结构,而具有边缘特性的位错则可能采用不同的原子构型,与不同的电荷状态和不同的迁移率相关联。在这项工作中,我们使用原子尺度模拟来研究带电和中性边缘位错的核心结构。我们报告了一种新的可能差排核心,它是电荷中性的、离解的,并且具有迄今为止报告的最低 Peierls 应力,从而使其成为塑性变形的有效组成部分。相比之下,带正电荷的位错移动性稍差,而带负电荷的位错移动性很低。我们的研究结果表明,电荷中性位错有利于滑动,它们可以通过与空位相互作用而在局部获得电荷,同时保持滑动。最后,我们研究了在其爬升面上离解的边缘位错,并证实它们在能量上比滑动位错更有利。计算核心转变的活化能有助于深入了解韧性-脆性转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信