{"title":"〈110〉{1̄10} edge dislocations in strontium titanate: Charged vs neutral, glide vs climb","authors":"Pierre Hirel, Patrick Cordier, Philippe Carrez","doi":"10.1016/j.actamat.2024.120636","DOIUrl":null,"url":null,"abstract":"The ductile deformation of strontium titanate SrTiO<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math></script></span> at low temperature (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">&#x2A85;</mo><mn is=\"true\">1000</mn></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 4040.6 1196.3\" width=\"9.385ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g><g is=\"true\" transform=\"translate(982,0)\"><use xlink:href=\"#MJAMS-2A85\"></use></g><g is=\"true\" transform=\"translate(2038,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">T</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">⪅</mo><mn is=\"true\">1000</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">T</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">⪅</mo><mn is=\"true\">1000</mn></mrow></math></script></span> K) is commonly associated with the activity of dislocations gliding in <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">110</mn><mo is=\"true\">}</mo></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2502.5 1196.3\" width=\"5.812ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-7B\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(2002,0)\"><use xlink:href=\"#MJMAIN-7D\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">110</mn><mo is=\"true\">}</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">110</mn><mo is=\"true\">}</mo></mrow></math></script></span> slip planes. While dislocations with pure screw character keep essentially the same dissociated core structure in the whole temperature range, dislocations with edge character may adopt different atomic configurations, associated with different charge states and different mobilities. In this work we use atomic-scale simulations to investigate the core structure of charged and neutral edge dislocations. We report a new possible dislocation core that is charge-neutral, dissociated, and with the lowest Peierls stress reported so far, thus making it an efficient component of plastic deformation. In comparison, dislocations carrying a positive charge are slightly less mobile, while those with negative charge have a very low mobility. Our results indicate that glide of charge-neutral dislocations is favoured, and that they may locally acquire a charge by interacting with vacancies all while remaining glissile. Finally, we investigate edge dislocations that are dissociated in their climb plane, and confirm that they are energetically more favourable than their glissile counterparts. Computing the activation energy for the core transformation provides insight into the ductile–brittle transition.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"245 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120636","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ductile deformation of strontium titanate SrTiO at low temperature ( K) is commonly associated with the activity of dislocations gliding in slip planes. While dislocations with pure screw character keep essentially the same dissociated core structure in the whole temperature range, dislocations with edge character may adopt different atomic configurations, associated with different charge states and different mobilities. In this work we use atomic-scale simulations to investigate the core structure of charged and neutral edge dislocations. We report a new possible dislocation core that is charge-neutral, dissociated, and with the lowest Peierls stress reported so far, thus making it an efficient component of plastic deformation. In comparison, dislocations carrying a positive charge are slightly less mobile, while those with negative charge have a very low mobility. Our results indicate that glide of charge-neutral dislocations is favoured, and that they may locally acquire a charge by interacting with vacancies all while remaining glissile. Finally, we investigate edge dislocations that are dissociated in their climb plane, and confirm that they are energetically more favourable than their glissile counterparts. Computing the activation energy for the core transformation provides insight into the ductile–brittle transition.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.