Development of Periapical Index Score Classification System in Periapical Radiographs Using Deep Learning.

Natdanai Hirata, Panupong Pudhieng, Sadanan Sena, Suebpong Torn-Asa, Wannakamon Panyarak, Kittipit Klanliang, Kittichai Wantanajittikul
{"title":"Development of Periapical Index Score Classification System in Periapical Radiographs Using Deep Learning.","authors":"Natdanai Hirata, Panupong Pudhieng, Sadanan Sena, Suebpong Torn-Asa, Wannakamon Panyarak, Kittipit Klanliang, Kittichai Wantanajittikul","doi":"10.1007/s10278-024-01360-y","DOIUrl":null,"url":null,"abstract":"<p><p>Periapical index (PAI) scoring system is the most popular index for evaluating apical periodontitis (AP) on radiographs. It provides an ordinal scale of 1 to 5, ranging from healthy to severe AP. Scoring PAI is a time-consuming process and requires experienced dentists; thus, deep learning has been applied to hasten the process. However, most models failed to score the early stage of AP or the score 2 accurately since it shares very similar characteristics with its adjacent scores. In this study, we developed and compared binary classification methods for PAI scores which were normality classification method and health-disease classification method. The normality classification method classified PAI score 1 as Normal and Abnormal for the rest of the scores while the health-disease method classified PAI scores 1 and 2 as Healthy and Diseased for the rest of the scores. A total of 2266 periapical root areas (PRAs) from 520 periapical radiographs (Pas) were selected and scored by experts. GoogLeNet, AlexNet, and ResNet convolutional neural networks (CNNs) were used in this study. Trained models' performances were evaluated and then compared. The models in the normality classification method achieved the highest accuracy of 75.00%, while the health-disease method models performed better with the highest accuracy of 83.33%. In conclusion, CNN models performed better in classification when grouping PAI scores 1 and 2 together in the same class, supporting the health-disease PAI scoring usage in clinical practice.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01360-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Periapical index (PAI) scoring system is the most popular index for evaluating apical periodontitis (AP) on radiographs. It provides an ordinal scale of 1 to 5, ranging from healthy to severe AP. Scoring PAI is a time-consuming process and requires experienced dentists; thus, deep learning has been applied to hasten the process. However, most models failed to score the early stage of AP or the score 2 accurately since it shares very similar characteristics with its adjacent scores. In this study, we developed and compared binary classification methods for PAI scores which were normality classification method and health-disease classification method. The normality classification method classified PAI score 1 as Normal and Abnormal for the rest of the scores while the health-disease method classified PAI scores 1 and 2 as Healthy and Diseased for the rest of the scores. A total of 2266 periapical root areas (PRAs) from 520 periapical radiographs (Pas) were selected and scored by experts. GoogLeNet, AlexNet, and ResNet convolutional neural networks (CNNs) were used in this study. Trained models' performances were evaluated and then compared. The models in the normality classification method achieved the highest accuracy of 75.00%, while the health-disease method models performed better with the highest accuracy of 83.33%. In conclusion, CNN models performed better in classification when grouping PAI scores 1 and 2 together in the same class, supporting the health-disease PAI scoring usage in clinical practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信