Inhibition of the PI3K-AKT-MTORC1 axis reduces the burden of the m.3243A>G mtDNA mutation by promoting mitophagy and improving mitochondrial function.

Autophagy Pub Date : 2025-04-01 Epub Date: 2024-12-12 DOI:10.1080/15548627.2024.2437908
Chih-Yao Chung, Kritarth Singh, Preethi Sheshadri, Gabriel E Valdebenito, Anitta R Chacko, María Alicia Costa Besada, Xiao Fei Liang, Lida Kabir, Robert D S Pitceathly, Gyorgy Szabadkai, Michael R Duchen
{"title":"Inhibition of the PI3K-AKT-MTORC1 axis reduces the burden of the m.3243A>G mtDNA mutation by promoting mitophagy and improving mitochondrial function.","authors":"Chih-Yao Chung, Kritarth Singh, Preethi Sheshadri, Gabriel E Valdebenito, Anitta R Chacko, María Alicia Costa Besada, Xiao Fei Liang, Lida Kabir, Robert D S Pitceathly, Gyorgy Szabadkai, Michael R Duchen","doi":"10.1080/15548627.2024.2437908","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans. We have previously shown that the mutation is associated with constitutive activation of the PI3K-AKT-MTORC1 axis. Inhibition of this pathway in patient fibroblasts reduced the mutant load, rescued mitochondrial bioenergetic function and reduced glucose dependence. We have now investigated the mechanisms that select against the mutant mtDNA under these conditions. Basal macroautophagy/autophagy and lysosomal degradation of mitochondria were suppressed in the mutant cells. Pharmacological inhibition of any step of the PI3K-AKT-MTORC1 pathway activated mitophagy and progressively reduced m.3243A>G mutant load over weeks. Inhibition of autophagy with bafilomycin A<sub>1</sub> or chloroquine prevented the reduction in mutant load, suggesting that mitophagy was necessary to remove the mutant mtDNA. Inhibition of the pathway was associated with metabolic remodeling - mitochondrial membrane potential and respiratory rate improved even before a measurable fall in mutant load and proved crucial for mitophagy. Thus, maladaptive activation of the PI3K-AKT-MTORC1 axis and impaired autophagy play a major role in shaping the presentation and progression of disease caused by the m.3243A>G mutation. Our findings highlight a potential therapeutic target for this otherwise intractable disease.<b>Abbreviation</b>: ΔΨ<sub>m</sub>: mitochondrial membrane potential; 2DG: 2-deoxy-D-glucose; ANOVA: analysis of variance; ARMS-qPCR: amplification-refractory mutation system quantitative polymerase chain reaction; Baf A1: bafilomycin A<sub>1</sub>; BSA: bovine serum albumin; CQ: chloroquine; Cybrid: cytoplasmic hybrid; CYCS: cytochrome c, somatic; DCA: dichloroacetic acid; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethylsulfoxide; EGFP: enhanced green fluorescent protein; LC3B-I: carboxy terminus cleaved microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated microtubule-associated protein 1 light chain 3 beta; LY: LY290042; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; MFC: mitochondrial fragmentation count; mt-Keima: mitochondrial-targeted mKeima; mtDNA: mitochondrial DNA/mitochondrial genome; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OA: oligomycin+antimycin A; OxPhos: oxidative phosphorylation; DPBS: Dulbecco's phosphate-buffered saline; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PPARGC1B/PGC-1β: PPARG coactivator 1 beta; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; qPCR: quantitative polymerase chain reaction; RNA-seq: RNA sequencing; RP: rapamycin; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"881-896"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2437908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans. We have previously shown that the mutation is associated with constitutive activation of the PI3K-AKT-MTORC1 axis. Inhibition of this pathway in patient fibroblasts reduced the mutant load, rescued mitochondrial bioenergetic function and reduced glucose dependence. We have now investigated the mechanisms that select against the mutant mtDNA under these conditions. Basal macroautophagy/autophagy and lysosomal degradation of mitochondria were suppressed in the mutant cells. Pharmacological inhibition of any step of the PI3K-AKT-MTORC1 pathway activated mitophagy and progressively reduced m.3243A>G mutant load over weeks. Inhibition of autophagy with bafilomycin A1 or chloroquine prevented the reduction in mutant load, suggesting that mitophagy was necessary to remove the mutant mtDNA. Inhibition of the pathway was associated with metabolic remodeling - mitochondrial membrane potential and respiratory rate improved even before a measurable fall in mutant load and proved crucial for mitophagy. Thus, maladaptive activation of the PI3K-AKT-MTORC1 axis and impaired autophagy play a major role in shaping the presentation and progression of disease caused by the m.3243A>G mutation. Our findings highlight a potential therapeutic target for this otherwise intractable disease.Abbreviation: ΔΨm: mitochondrial membrane potential; 2DG: 2-deoxy-D-glucose; ANOVA: analysis of variance; ARMS-qPCR: amplification-refractory mutation system quantitative polymerase chain reaction; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CQ: chloroquine; Cybrid: cytoplasmic hybrid; CYCS: cytochrome c, somatic; DCA: dichloroacetic acid; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethylsulfoxide; EGFP: enhanced green fluorescent protein; LC3B-I: carboxy terminus cleaved microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated microtubule-associated protein 1 light chain 3 beta; LY: LY290042; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; MFC: mitochondrial fragmentation count; mt-Keima: mitochondrial-targeted mKeima; mtDNA: mitochondrial DNA/mitochondrial genome; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OA: oligomycin+antimycin A; OxPhos: oxidative phosphorylation; DPBS: Dulbecco's phosphate-buffered saline; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PPARGC1B/PGC-1β: PPARG coactivator 1 beta; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; qPCR: quantitative polymerase chain reaction; RNA-seq: RNA sequencing; RP: rapamycin; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; WT: wild-type.

抑制PI3K-AKT-MTORC1轴可通过促进线粒体自噬和改善线粒体功能来减轻m.3243A>G mtDNA突变的负担。
线粒体DNA (mtDNA)编码氧化磷酸化必需的基因。m.3243A >g突变可导致严重疾病,包括肌病、乳酸酸中毒和卒中样发作(MELAS),是人类最常见的致病性mtDNA突变。我们之前已经证明该突变与PI3K-AKT-MTORC1轴的组成性激活有关。在患者成纤维细胞中抑制这一途径可减少突变体负荷,恢复线粒体生物能量功能并降低葡萄糖依赖性。我们现在已经研究了在这些条件下选择对抗突变mtDNA的机制。突变细胞的基础巨噬/自噬和线粒体溶酶体降解受到抑制。药理抑制PI3K-AKT-MTORC1通路的任何步骤都可以激活线粒体自噬,并在数周内逐渐减少m.3243A>G突变体负荷。用巴菲霉素A1或氯喹抑制自噬可以阻止突变体负荷的减少,这表明线粒体自噬是去除突变体mtDNA所必需的。该途径的抑制与代谢重塑有关——甚至在突变体负荷显著下降之前,线粒体膜电位和呼吸频率就得到改善,这对线粒体自噬至关重要。因此,PI3K-AKT-MTORC1轴的不适应激活和自噬受损在形成由m.3243A>G突变引起的疾病的表现和进展中起主要作用。我们的发现强调了这种其他难治性疾病的潜在治疗靶点。缩写:ΔΨm:线粒体膜电位;2 dg: 2-deoxy-D-glucose;ANOVA:方差分析;ARMS-qPCR:扩增-难扩增突变系统定量聚合酶链反应;Baf A1:巴霉素A1;牛血清白蛋白;CQ:氯喹;Cybrid:细胞质杂交;CYCS:细胞色素c,体细胞;DCA:二氯乙酸;DMEM: Dulbecco改良Eagle培养基;DMSO:二甲亚砜;EGFP:增强绿色荧光蛋白;LC3B-I:羧基末端裂解微管相关蛋白1轻链3 β;LC3B-II:脂化微管相关蛋白1轻链3 β;LY: LY290042;MAP1LC3B/LC3B:微管相关蛋白1轻链3 β;MELAS:线粒体脑肌病、乳酸酸中毒和卒中样发作;MFC:线粒体碎片计数;mt-Keima:线粒体靶向mKeima;mtDNA:线粒体DNA/线粒体基因组;MTOR:雷帕霉素激酶的机制靶点MTORC1: MTOR复合物1;OA:寡霉素+抗霉素A;OxPhos:氧化磷酸化;DPBS: Dulbecco's磷酸盐缓冲盐水;PPARGC1A/PGC-1α: PPARG辅激活因子1α;PPARGC1B/PGC-1β: PPARG共激活因子1β;PI3K:磷酸肌肽3-激酶;PINK1: PTEN诱导激酶1;qPCR:定量聚合酶链反应;RNA-seq: RNA测序;记者:雷帕霉素;SQSTM1/p62: sequestosome 1;TEM:透射电子显微镜;WT:野生型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信