Xiao-Ying Wang, Jing Zhang, Hong-Yan Li, Chen-Song Dong, Huai-En Dai, Mingzhu Wang, Lin Liu
{"title":"Structural Basis for Monomer-Dimer Transition of Dri1 Upon Heme Binding.","authors":"Xiao-Ying Wang, Jing Zhang, Hong-Yan Li, Chen-Song Dong, Huai-En Dai, Mingzhu Wang, Lin Liu","doi":"10.1002/prot.26778","DOIUrl":null,"url":null,"abstract":"<p><p>Domain related to iron (DRI) contains approximately 90 residues and is involved in iron and heme metabolism. Recent discoveries have annotated Dri1, a DRI-only protein from the cyanobacterium Synechocystis, as a regulator of succinate dehydrogenase in a b-type heme-dependent manner or as a c-type heme oxygenase. Here, we report high-resolution structures of Dri1 in complex with b-type and c-type hemes, respectively. Bis-His-ligated heme is located in the middle of the dimeric Dri1 complex with heme b, as well as in the complex of monomeric Dri1 with c-type heme, but distinct heme binding modes are revealed. Structural analyses suggest that Dri1 may participate in the succinate dehydrogenase activity and/or the metabolism of cytochromes.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26778","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Domain related to iron (DRI) contains approximately 90 residues and is involved in iron and heme metabolism. Recent discoveries have annotated Dri1, a DRI-only protein from the cyanobacterium Synechocystis, as a regulator of succinate dehydrogenase in a b-type heme-dependent manner or as a c-type heme oxygenase. Here, we report high-resolution structures of Dri1 in complex with b-type and c-type hemes, respectively. Bis-His-ligated heme is located in the middle of the dimeric Dri1 complex with heme b, as well as in the complex of monomeric Dri1 with c-type heme, but distinct heme binding modes are revealed. Structural analyses suggest that Dri1 may participate in the succinate dehydrogenase activity and/or the metabolism of cytochromes.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.