Refining Biologically Inconsistent Segmentation Masks with Masked Autoencoders.

Alexander Sauer, Yuan Tian, Joerg Bewersdorf, Jens Rittscher
{"title":"Refining Biologically Inconsistent Segmentation Masks with Masked Autoencoders.","authors":"Alexander Sauer, Yuan Tian, Joerg Bewersdorf, Jens Rittscher","doi":"10.1109/CVPRW63382.2024.00684","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopy images often feature regions of low signal-to-noise ratio (SNR) which leads to a considerable amount of ambiguity in the correct corresponding segmentation. This ambiguity can introduce inconsistencies in the segmentation mask which violate known biological constraints. In this work, we present a methodology which identifies areas of low SNR and refines the segmentation masks such that they are consistent with biological structures. Low SNR regions with uncertain segmentation are detected using model ensembling and selectively restored by a masked autoencoder (MAE) which leverages information about well-imaged surrounding areas. The prior knowledge of biologically consistent segmentation masks is directly learned from the data. We validate our approach in the context of analysing intracellular structures, specifically by refining segmentation masks of mitochondria in expansion microscopy images with a global staining.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":" ","pages":"6904-6912"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW63382.2024.00684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopy images often feature regions of low signal-to-noise ratio (SNR) which leads to a considerable amount of ambiguity in the correct corresponding segmentation. This ambiguity can introduce inconsistencies in the segmentation mask which violate known biological constraints. In this work, we present a methodology which identifies areas of low SNR and refines the segmentation masks such that they are consistent with biological structures. Low SNR regions with uncertain segmentation are detected using model ensembling and selectively restored by a masked autoencoder (MAE) which leverages information about well-imaged surrounding areas. The prior knowledge of biologically consistent segmentation masks is directly learned from the data. We validate our approach in the context of analysing intracellular structures, specifically by refining segmentation masks of mitochondria in expansion microscopy images with a global staining.

利用掩码自动编码器完善生物不一致分割掩码
显微镜图像通常具有信噪比(SNR)较低的区域,这导致正确的相应分割存在相当大的模糊性。这种模糊性会导致分割掩码不一致,从而违反已知的生物约束条件。在这项工作中,我们提出了一种识别低信噪比区域并完善分割掩码的方法,使其与生物结构相一致。利用模型集合检测出具有不确定分割的低信噪比区域,并通过屏蔽自动编码器(MAE)有选择性地进行恢复,该编码器利用了周围成像良好区域的信息。生物一致性分割掩码的先验知识是直接从数据中学习的。我们在分析细胞内结构时验证了我们的方法,特别是通过完善扩增显微镜图像中线粒体的全局染色分割掩码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信