Real-world evidence in the cloud: Tutorial on developing an end-to-end data and analytics pipeline using Amazon Web Services resources

IF 3.1 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Wes Anderson, Roopal Bhatnagar, Keith Scollick, Marco Schito, Ramona Walls, Jagdeep T. Podichetty
{"title":"Real-world evidence in the cloud: Tutorial on developing an end-to-end data and analytics pipeline using Amazon Web Services resources","authors":"Wes Anderson,&nbsp;Roopal Bhatnagar,&nbsp;Keith Scollick,&nbsp;Marco Schito,&nbsp;Ramona Walls,&nbsp;Jagdeep T. Podichetty","doi":"10.1111/cts.70078","DOIUrl":null,"url":null,"abstract":"<p>In the rapidly evolving landscape of healthcare and drug development, the ability to efficiently collect, process, and analyze large volumes of real-world data (RWD) is critical for advancing drug development. This article provides a blueprint for establishing an end-to-end data and analytics pipeline in a cloud-based environment. The pipeline presented here includes four major components, including data ingestion, transformation, visualization, and analytics, each supported by a suite of Amazon Web Services (AWS) tools. The pipeline is exemplified through the CURE ID platform, a collaborative tool designed to capture and analyze real-world, off-label treatment administrations. By using services such as AWS Lambda, Amazon Relational Database Service (RDS), Amazon QuickSight, and Amazon SageMaker, the pipeline facilitates the ingestion of diverse data sources, the transformation of raw data into structured formats, the creation of interactive dashboards for data visualization, and the application of advanced machine learning models for data analytics. The described architecture not only supports the needs of the CURE ID platform, but also offers a scalable and adaptable framework that can be applied across various domains to enhance data-driven decision making beyond drug repurposing.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving landscape of healthcare and drug development, the ability to efficiently collect, process, and analyze large volumes of real-world data (RWD) is critical for advancing drug development. This article provides a blueprint for establishing an end-to-end data and analytics pipeline in a cloud-based environment. The pipeline presented here includes four major components, including data ingestion, transformation, visualization, and analytics, each supported by a suite of Amazon Web Services (AWS) tools. The pipeline is exemplified through the CURE ID platform, a collaborative tool designed to capture and analyze real-world, off-label treatment administrations. By using services such as AWS Lambda, Amazon Relational Database Service (RDS), Amazon QuickSight, and Amazon SageMaker, the pipeline facilitates the ingestion of diverse data sources, the transformation of raw data into structured formats, the creation of interactive dashboards for data visualization, and the application of advanced machine learning models for data analytics. The described architecture not only supports the needs of the CURE ID platform, but also offers a scalable and adaptable framework that can be applied across various domains to enhance data-driven decision making beyond drug repurposing.

Abstract Image

云中的真实世界证据:关于使用Amazon Web Services资源开发端到端数据和分析管道的教程。
在快速发展的医疗保健和药物开发领域,有效收集、处理和分析大量实际数据(RWD)的能力对于推进药物开发至关重要。本文提供了在基于云的环境中建立端到端数据和分析管道的蓝图。这里展示的管道包括四个主要组件,包括数据摄取、转换、可视化和分析,每个组件都由一套Amazon Web Services (AWS)工具支持。该管道通过CURE ID平台举例说明,该平台是一种协作工具,旨在捕获和分析现实世界的非标签治疗管理。通过使用AWS Lambda、Amazon Relational Database Service (RDS)、Amazon QuickSight和Amazon SageMaker等服务,该管道促进了各种数据源的摄取,将原始数据转换为结构化格式,创建用于数据可视化的交互式仪表板,以及应用用于数据分析的高级机器学习模型。所描述的体系结构不仅支持CURE ID平台的需求,而且还提供了一个可扩展和可适应的框架,可以跨各个领域应用,以增强数据驱动的决策制定,而不仅仅是药物再利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cts-Clinical and Translational Science
Cts-Clinical and Translational Science 医学-医学:研究与实验
CiteScore
6.70
自引率
2.60%
发文量
234
审稿时长
6-12 weeks
期刊介绍: Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信