{"title":"The heavy-chain stoichiometry of smooth muscle myosin is a characteristic of smooth muscle tissues.","authors":"M A Mohammad, M P Sparrow","doi":"10.1071/bi9880409","DOIUrl":null,"url":null,"abstract":"<p><p>The stoichiometry of the two heavy chains of myosin in smooth muscle was determined by electrophoresing extracts of native myosin and of dissociated myosin on sodium dodecyl sulfate (SDS) 4%-polyacrylamide gels. The slower migrating heavy chain was 3.6 times more abundant in toad stomach, 2.3 in rabbit myometrium, 2.0 in rat femoral artery, 1.3 in guinea pig ileum, 0.93 in pig trachea and 0.69 in human bronchus, than the more rapidly migrating chain. Both heavy chains were identified as smooth muscle myosin by immunoblotting using antibodies to smooth muscle and non-muscle myosin. The unequal proportion of heavy chains suggested the possibility of native isoforms of myosin comprised of heavy-chain homodimers. To test this, native myosin extracts wer electrophoresed on non-dissociating (pyrophosphate) gels. When each band was individually analysed on SDS-polyacrylamide gel the slowest was found to be filamin and the other bands were myosin in which the relative proportion of the heavy chains was unchanged from that found in the original tissue extracts. Since this is incompatible with either a heterodimeric or a homodimeric arrangement it suggests that pyrophosphate gel electrophoresis is incapable of separating putative isoforms of native myosin.</p>","PeriodicalId":8573,"journal":{"name":"Australian journal of biological sciences","volume":"41 4","pages":"409-19"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian journal of biological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/bi9880409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The stoichiometry of the two heavy chains of myosin in smooth muscle was determined by electrophoresing extracts of native myosin and of dissociated myosin on sodium dodecyl sulfate (SDS) 4%-polyacrylamide gels. The slower migrating heavy chain was 3.6 times more abundant in toad stomach, 2.3 in rabbit myometrium, 2.0 in rat femoral artery, 1.3 in guinea pig ileum, 0.93 in pig trachea and 0.69 in human bronchus, than the more rapidly migrating chain. Both heavy chains were identified as smooth muscle myosin by immunoblotting using antibodies to smooth muscle and non-muscle myosin. The unequal proportion of heavy chains suggested the possibility of native isoforms of myosin comprised of heavy-chain homodimers. To test this, native myosin extracts wer electrophoresed on non-dissociating (pyrophosphate) gels. When each band was individually analysed on SDS-polyacrylamide gel the slowest was found to be filamin and the other bands were myosin in which the relative proportion of the heavy chains was unchanged from that found in the original tissue extracts. Since this is incompatible with either a heterodimeric or a homodimeric arrangement it suggests that pyrophosphate gel electrophoresis is incapable of separating putative isoforms of native myosin.