Synthetic biology and artificial intelligence in crop improvement.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2025-02-10 Epub Date: 2024-12-12 DOI:10.1016/j.xplc.2024.101220
Daolei Zhang, Fan Xu, Fanhua Wang, Liang Le, Li Pu
{"title":"Synthetic biology and artificial intelligence in crop improvement.","authors":"Daolei Zhang, Fan Xu, Fanhua Wang, Liang Le, Li Pu","doi":"10.1016/j.xplc.2024.101220","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic biology plays a pivotal role in improving crop traits and increasing bioproduction through the use of engineering principles that purposefully modify plants through \"design, build, test, and learn\" cycles, ultimately resulting in improved bioproduction based on an input genetic circuit (DNA, RNA, and proteins). Crop synthetic biology is a new tool that uses circular principles to redesign and create innovative biological components, devices, and systems to enhance yields, nutrient absorption, resilience, and nutritional quality. In the digital age, artificial intelligence (AI) has demonstrated great strengths in design and learning. The application of AI has become an irreversible trend, with particularly remarkable potential for use in crop breeding. However, there has not yet been a systematic review of AI-driven synthetic biology pathways for plant engineering. In this review, we explore the fundamental engineering principles used in crop synthetic biology and their applications for crop improvement. We discuss approaches to genetic circuit design, including gene editing, synthetic nucleic acid and protein technologies, multi-omics analysis, genomic selection, directed protein engineering, and AI. We then outline strategies for the development of crops with higher photosynthetic efficiency, reshaped plant architecture, modified metabolic pathways, and improved environmental adaptability and nutrient absorption; the establishment of trait networks; and the construction of crop factories. We propose the development of SMART (self-monitoring, adapted, and responsive technology) crops through AI-empowered synthetic biotechnology. Finally, we address challenges associated with the development of synthetic biology and offer potential solutions for crop improvement.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101220"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101220","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic biology plays a pivotal role in improving crop traits and increasing bioproduction through the use of engineering principles that purposefully modify plants through "design, build, test, and learn" cycles, ultimately resulting in improved bioproduction based on an input genetic circuit (DNA, RNA, and proteins). Crop synthetic biology is a new tool that uses circular principles to redesign and create innovative biological components, devices, and systems to enhance yields, nutrient absorption, resilience, and nutritional quality. In the digital age, artificial intelligence (AI) has demonstrated great strengths in design and learning. The application of AI has become an irreversible trend, with particularly remarkable potential for use in crop breeding. However, there has not yet been a systematic review of AI-driven synthetic biology pathways for plant engineering. In this review, we explore the fundamental engineering principles used in crop synthetic biology and their applications for crop improvement. We discuss approaches to genetic circuit design, including gene editing, synthetic nucleic acid and protein technologies, multi-omics analysis, genomic selection, directed protein engineering, and AI. We then outline strategies for the development of crops with higher photosynthetic efficiency, reshaped plant architecture, modified metabolic pathways, and improved environmental adaptability and nutrient absorption; the establishment of trait networks; and the construction of crop factories. We propose the development of SMART (self-monitoring, adapted, and responsive technology) crops through AI-empowered synthetic biotechnology. Finally, we address challenges associated with the development of synthetic biology and offer potential solutions for crop improvement.

合成生物学和人工智能在作物改良中的应用。
合成生物学(SynBio)在改善作物性状和提高生物产量方面发挥着关键作用,它利用工程学原理,通过 "设计、构建、测试和学习 "的循环,有目的地改造植物,最终在输入基因回路(DNA、RNA 和蛋白质)的基础上提高生物产量。作物合成生物学是一种新工具,它遵循循环原理,重新设计和创建创新的生物组件、装置和系统,以提高产量、养分吸收、抗逆性和营养质量。在数字时代,人工智能(AI)在设计和学习方面显示出巨大的意义。人工智能的应用已成为不可逆转的趋势,其在作物育种领域的潜力尤为显著。然而,目前还缺乏对人工智能驱动的植物工程合成生物学途径的系统综述。在本综述中,我们将探讨作物合成生物学中采用的基本工程原理及其在作物改良中的应用。基因回路设计方法包括基因编辑、合成核酸和蛋白质技术、多组学分析、基因组选择、定向蛋白质工程和人工智能。然后,我们概述了开发光合效率更高的作物、重塑植物结构、改造作物代谢途径、改善环境适应性和养分吸收、建立性状网络和构建作物工厂的战略。此外,我们还建议通过人工智能驱动的合成生物技术,开发自我监测、适应和响应技术(SMART)作物。此外,我们还探讨了与合成生物学发展相关的挑战,并提出了作物改良的潜在解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信