ClinValAI: A framework for developing Cloud-based infrastructures for the External Clinical Validation of AI in Medical Imaging.

Q2 Computer Science
Ojas A Ramwala, Kathryn P Lowry, Daniel S Hippe, Matthew P N Unrath, Matthew J Nyflot, Sean D Mooney, Christoph I Lee
{"title":"ClinValAI: A framework for developing Cloud-based infrastructures for the External Clinical Validation of AI in Medical Imaging.","authors":"Ojas A Ramwala, Kathryn P Lowry, Daniel S Hippe, Matthew P N Unrath, Matthew J Nyflot, Sean D Mooney, Christoph I Lee","doi":"10.1142/9789819807024_0016","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) algorithms showcase the potential to steer a paradigm shift in clinical medicine, especially medical imaging. Concerns associated with model generalizability and biases necessitate rigorous external validation of AI algorithms prior to their adoption into clinical workflows. To address the barriers associated with patient privacy, intellectual property, and diverse model requirements, we introduce ClinValAI, a framework for establishing robust cloud-based infrastructures to clinically validate AI algorithms in medical imaging. By featuring dedicated workflows for data ingestion, algorithm scoring, and output processing, we propose an easily customizable method to assess AI models and investigate biases. Our novel orchestration mechanism facilitates utilizing the complete potential of the cloud computing environment. ClinValAI's input auditing and standardization mechanisms ensure that inputs consistent with model prerequisites are provided to the algorithm for a streamlined validation. The scoring workflow comprises multiple steps to facilitate consistent inferencing and systematic troubleshooting. The output processing workflow helps identify and analyze samples with missing results and aggregates final outputs for downstream analysis. We demonstrate the usability of our work by evaluating a state-of-the-art breast cancer risk prediction algorithm on a large and diverse dataset of 2D screening mammograms. We perform comprehensive statistical analysis to study model calibration and evaluate performance on important factors, including breast density, age, and race, to identify latent biases. ClinValAI provides a holistic framework to validate medical imaging models and has the potential to advance the development of generalizable AI models in clinical medicine and promote health equity.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"215-228"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789819807024_0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) algorithms showcase the potential to steer a paradigm shift in clinical medicine, especially medical imaging. Concerns associated with model generalizability and biases necessitate rigorous external validation of AI algorithms prior to their adoption into clinical workflows. To address the barriers associated with patient privacy, intellectual property, and diverse model requirements, we introduce ClinValAI, a framework for establishing robust cloud-based infrastructures to clinically validate AI algorithms in medical imaging. By featuring dedicated workflows for data ingestion, algorithm scoring, and output processing, we propose an easily customizable method to assess AI models and investigate biases. Our novel orchestration mechanism facilitates utilizing the complete potential of the cloud computing environment. ClinValAI's input auditing and standardization mechanisms ensure that inputs consistent with model prerequisites are provided to the algorithm for a streamlined validation. The scoring workflow comprises multiple steps to facilitate consistent inferencing and systematic troubleshooting. The output processing workflow helps identify and analyze samples with missing results and aggregates final outputs for downstream analysis. We demonstrate the usability of our work by evaluating a state-of-the-art breast cancer risk prediction algorithm on a large and diverse dataset of 2D screening mammograms. We perform comprehensive statistical analysis to study model calibration and evaluate performance on important factors, including breast density, age, and race, to identify latent biases. ClinValAI provides a holistic framework to validate medical imaging models and has the potential to advance the development of generalizable AI models in clinical medicine and promote health equity.

ClinValAI:为医学影像中人工智能的外部临床验证开发基于云的基础设施的框架。
人工智能(AI)算法展示了引导临床医学范式转变的潜力,尤其是医学成像。在将人工智能算法应用于临床工作流程之前,需要对其进行严格的外部验证,这与模型的泛化性和偏差有关。为了解决与患者隐私、知识产权和不同模型需求相关的障碍,我们引入了ClinValAI,这是一个框架,用于建立强大的基于云的基础设施,以临床验证医学成像中的人工智能算法。通过为数据摄取、算法评分和输出处理提供专门的工作流程,我们提出了一种易于定制的方法来评估人工智能模型和调查偏差。我们新颖的编排机制有助于充分利用云计算环境的全部潜力。ClinValAI的输入审计和标准化机制确保与模型先决条件一致的输入被提供给简化验证的算法。评分工作流程包括多个步骤,以促进一致的推理和系统的故障排除。输出处理工作流有助于识别和分析缺少结果的样本,并汇总最终输出以供下游分析。我们通过评估最先进的乳腺癌风险预测算法在大型和多样化的2D筛查乳房x线照片数据集上的可用性来证明我们工作的可用性。我们进行了全面的统计分析来研究模型校准,并评估了包括乳房密度、年龄和种族在内的重要因素的性能,以识别潜在的偏差。ClinValAI提供了一个整体框架来验证医学成像模型,并有可能推动临床医学中通用人工智能模型的发展,促进卫生公平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信