Biologically Enhanced Machine Learning Model to uncover Novel Gene-Drug Targets for Alzheimer's Disease.

Q2 Computer Science
Alena Orlenko, Mythreye Venkatesan, Li Shen, Marylyn D Ritchie, Zhiping Paul Wang, Tayo Obafemi-Ajayi, Jason H Moore
{"title":"Biologically Enhanced Machine Learning Model to uncover Novel Gene-Drug Targets for Alzheimer's Disease.","authors":"Alena Orlenko, Mythreye Venkatesan, Li Shen, Marylyn D Ritchie, Zhiping Paul Wang, Tayo Obafemi-Ajayi, Jason H Moore","doi":"10.1142/9789819807024_0032","DOIUrl":null,"url":null,"abstract":"<p><p>Given the complexity and multifactorial nature of Alzheimer's disease, investigating potential drug-gene targets is imperative for developing effective therapies and advancing our understanding of the underlying mechanisms driving the disease. We present an explainable ML model that integrates the role and impact of gene interactions to drive the genomic variant feature selection. The model leverages both the Alzheimer's knowledge base and the Drug-Gene interaction database (DGIdb) to identify a list of biologically plausible novel gene-drug targets for further investigation. Model validation is performed on an ethnically diverse study sample obtained from the Alzheimer's Disease Sequencing Project (ADSP), a multi-ancestry multi-cohort genomic study. To mitigate population stratification and spurious associations from ML analysis, we implemented novel data curation methods. The study outcomes include a set of possible gene targets for further functional follow-up and drug repurposing.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"441-456"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789819807024_0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Given the complexity and multifactorial nature of Alzheimer's disease, investigating potential drug-gene targets is imperative for developing effective therapies and advancing our understanding of the underlying mechanisms driving the disease. We present an explainable ML model that integrates the role and impact of gene interactions to drive the genomic variant feature selection. The model leverages both the Alzheimer's knowledge base and the Drug-Gene interaction database (DGIdb) to identify a list of biologically plausible novel gene-drug targets for further investigation. Model validation is performed on an ethnically diverse study sample obtained from the Alzheimer's Disease Sequencing Project (ADSP), a multi-ancestry multi-cohort genomic study. To mitigate population stratification and spurious associations from ML analysis, we implemented novel data curation methods. The study outcomes include a set of possible gene targets for further functional follow-up and drug repurposing.

生物增强机器学习模型揭示阿尔茨海默病的新基因药物靶点。
鉴于阿尔茨海默病的复杂性和多因素性质,研究潜在的药物基因靶点对于开发有效的治疗方法和提高我们对驱动该疾病的潜在机制的理解是必不可少的。我们提出了一个可解释的机器学习模型,该模型集成了基因相互作用的作用和影响,以驱动基因组变异特征选择。该模型利用阿尔茨海默病知识库和药物-基因相互作用数据库(DGIdb)来确定生物学上合理的新基因-药物靶点列表,以供进一步研究。模型验证是在从阿尔茨海默病测序项目(ADSP)获得的不同种族的研究样本上进行的,这是一项多祖先多队列基因组研究。为了减轻ML分析中的人口分层和虚假关联,我们实施了新的数据管理方法。研究结果包括一组可能的基因靶点,用于进一步的功能随访和药物再利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信