Assessment of Drug Impact on Laboratory Test Results in Hospital Settings.

Q2 Computer Science
Victorine P Muse, Amalie D Haue, Cristina L Rodríguez, Alejandro A Orozco, Jorge H Biel, Søren Brunak
{"title":"Assessment of Drug Impact on Laboratory Test Results in Hospital Settings.","authors":"Victorine P Muse, Amalie D Haue, Cristina L Rodríguez, Alejandro A Orozco, Jorge H Biel, Søren Brunak","doi":"10.1142/9789819807024_0026","DOIUrl":null,"url":null,"abstract":"<p><p>Patients experiencing adverse drug events (ADE) from polypharmaceutical regimens present a huge challenge to modern healthcare. While computational efforts may reduce the incidence of these ADEs, current strategies are typically non-generalizable for standard healthcare systems. To address this, we carried out a retrospective study aimed at developing a statistical approach to detect and quantify potential ADEs. The data foundation comprised of almost 2 million patients from two health regions in Denmark and their drug and laboratory data during the years 2011 to 2016. We developed a series of multistate Cox models to compute hazard ratios for changes in laboratory test results before and after drug exposure. By linking the results to data from a drug-drug interaction database, we found that the models showed potential for applications for medical safety agencies and improved efficiency for drug approval pipelines.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"360-376"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789819807024_0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Patients experiencing adverse drug events (ADE) from polypharmaceutical regimens present a huge challenge to modern healthcare. While computational efforts may reduce the incidence of these ADEs, current strategies are typically non-generalizable for standard healthcare systems. To address this, we carried out a retrospective study aimed at developing a statistical approach to detect and quantify potential ADEs. The data foundation comprised of almost 2 million patients from two health regions in Denmark and their drug and laboratory data during the years 2011 to 2016. We developed a series of multistate Cox models to compute hazard ratios for changes in laboratory test results before and after drug exposure. By linking the results to data from a drug-drug interaction database, we found that the models showed potential for applications for medical safety agencies and improved efficiency for drug approval pipelines.

评估药物对医院化验结果的影响。
多药治疗方案中出现药物不良事件(ADE)的患者对现代医疗保健提出了巨大挑战。虽然计算的努力可能会减少这些不良事件的发生率,但目前的策略通常不能推广到标准的医疗保健系统。为了解决这个问题,我们进行了一项回顾性研究,旨在开发一种统计方法来检测和量化潜在的ade。该数据基础包括2011年至2016年期间来自丹麦两个卫生区域的近200万患者及其药物和实验室数据。我们开发了一系列多状态Cox模型来计算药物暴露前后实验室测试结果变化的风险比。通过将结果与药物-药物相互作用数据库的数据联系起来,我们发现这些模型显示了医疗安全机构应用的潜力,并提高了药物审批流程的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信