Mixture Disease Progression Model to Predict and Cluster the Long-Term Trajectory of Cognitive Decline in Alzheimer's Disease.

IF 2 4区 医学 Q4 MEDICAL INFORMATICS
Ryoichi Hanazawa, Hiroyuki Sato, Akihiro Hirakawa
{"title":"Mixture Disease Progression Model to Predict and Cluster the Long-Term Trajectory of Cognitive Decline in Alzheimer's Disease.","authors":"Ryoichi Hanazawa, Hiroyuki Sato, Akihiro Hirakawa","doi":"10.1007/s43441-024-00708-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a neurodegenerative disease for which many clinical trials failed to detect treatment effects, possibly due to the heterogeneity of disease progression among the patients. Predicting and clustering a long-term trajectory of cognitive decline from the short-term cognition data of individual patients would help develop therapeutic interventions for AD.</p><p><strong>Methods: </strong>This study developed mixture disease progression model to predict and cluster the long-term trajectory of cognitive decline in the population. We predicted the 30-year long-term trajectories of the three cognitive scales and categorized the individuals into rapid and slow cognitive decliners by applying the method, which was based on the two-component normal mixture nonlinear mixed-effects model, to the short-term follow-up data of the Mini-Mental State Examination, the 13-item Alzheimer's Disease Assessment Scale-Cognitive, and the Clinical Dementia Rating Scale-sum of boxes collected in patients with mild cognitive impairment and AD in the Alzheimer's Disease Neuroimaging Initiative.</p><p><strong>Results: </strong>For each cognitive scale, the models identified two distinct subpopulations, including a population of comprising approximately 10-20% of individuals experiencing rapid cognitive decline, wherein the posterior means of the differences in cognitive decline speed between the two groups ranged from 2 to 3 years. We also identified baseline background factors associated with rapid decliners for three cognitive scales.</p><p><strong>Conclusion: </strong>Identifying the risk factors associated with rapid decline of cognition by the proposed method aids in planning eligibility criteria and allocation strategy for accounting for the varying disease progression speeds among the patients enrolled in clinical trials for AD.</p>","PeriodicalId":23084,"journal":{"name":"Therapeutic innovation & regulatory science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic innovation & regulatory science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-024-00708-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease (AD) is a neurodegenerative disease for which many clinical trials failed to detect treatment effects, possibly due to the heterogeneity of disease progression among the patients. Predicting and clustering a long-term trajectory of cognitive decline from the short-term cognition data of individual patients would help develop therapeutic interventions for AD.

Methods: This study developed mixture disease progression model to predict and cluster the long-term trajectory of cognitive decline in the population. We predicted the 30-year long-term trajectories of the three cognitive scales and categorized the individuals into rapid and slow cognitive decliners by applying the method, which was based on the two-component normal mixture nonlinear mixed-effects model, to the short-term follow-up data of the Mini-Mental State Examination, the 13-item Alzheimer's Disease Assessment Scale-Cognitive, and the Clinical Dementia Rating Scale-sum of boxes collected in patients with mild cognitive impairment and AD in the Alzheimer's Disease Neuroimaging Initiative.

Results: For each cognitive scale, the models identified two distinct subpopulations, including a population of comprising approximately 10-20% of individuals experiencing rapid cognitive decline, wherein the posterior means of the differences in cognitive decline speed between the two groups ranged from 2 to 3 years. We also identified baseline background factors associated with rapid decliners for three cognitive scales.

Conclusion: Identifying the risk factors associated with rapid decline of cognition by the proposed method aids in planning eligibility criteria and allocation strategy for accounting for the varying disease progression speeds among the patients enrolled in clinical trials for AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapeutic innovation & regulatory science
Therapeutic innovation & regulatory science MEDICAL INFORMATICS-PHARMACOLOGY & PHARMACY
CiteScore
3.40
自引率
13.30%
发文量
127
期刊介绍: Therapeutic Innovation & Regulatory Science (TIRS) is the official scientific journal of DIA that strives to advance medical product discovery, development, regulation, and use through the publication of peer-reviewed original and review articles, commentaries, and letters to the editor across the spectrum of converting biomedical science into practical solutions to advance human health. The focus areas of the journal are as follows: Biostatistics Clinical Trials Product Development and Innovation Global Perspectives Policy Regulatory Science Product Safety Special Populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信