Workflow automation of SEM acquisitions and feature tracking.

IF 2.1 3区 工程技术 Q2 MICROSCOPY
Sabrina Clusiau, Nicolas Piché, Nicolas Brodusch, Mike Strauss, Raynald Gauvin
{"title":"Workflow automation of SEM acquisitions and feature tracking.","authors":"Sabrina Clusiau, Nicolas Piché, Nicolas Brodusch, Mike Strauss, Raynald Gauvin","doi":"10.1016/j.ultramic.2024.114093","DOIUrl":null,"url":null,"abstract":"<p><p>Acquiring multiple high magnification, high resolution images with scanning electron microscopes (SEMs) for quantitative analysis is a time consuming and repetitive task for microscopists. We propose a workflow to automate SEM image acquisition and demonstrate its use in the context of nanoparticle (NP) analysis. Acquiring multiple images of this type of specimen is necessary to obtain a complete and proper characterization of the NP population and obtain statistically representative results. Indeed, a single high magnification image only scans a small area of sample, containing only few NPs. The proposed workflow is successfully applied to obtain size distributions from image montages at three different magnifications (20,000x, 60,000x and 200,000x) on the same area of the sample using a Python based script. The automated workflow consists of sequential repositioning of the electron beam, stitching of adjacent images, feature segmentation, and NP size computation. Results show that NPs are best characterized at higher magnifications, since lower magnifications are limited by their pixel size. Increased accuracy of feature characterization at high magnification highlights the importance of automation: many high-magnification acquisitions are required to cover a similar area of the sample at low magnification. Therefore, we also present feature tracking with smart beam positioning as an alternative to blind acquisition of very large image arrays. Feature tracking is achieved by integrating microscope tasks with image processing tasks, and only areas of interest will be imaged at high resolution, reducing total acquisition duration.</p>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"269 ","pages":"114093"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ultramic.2024.114093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Acquiring multiple high magnification, high resolution images with scanning electron microscopes (SEMs) for quantitative analysis is a time consuming and repetitive task for microscopists. We propose a workflow to automate SEM image acquisition and demonstrate its use in the context of nanoparticle (NP) analysis. Acquiring multiple images of this type of specimen is necessary to obtain a complete and proper characterization of the NP population and obtain statistically representative results. Indeed, a single high magnification image only scans a small area of sample, containing only few NPs. The proposed workflow is successfully applied to obtain size distributions from image montages at three different magnifications (20,000x, 60,000x and 200,000x) on the same area of the sample using a Python based script. The automated workflow consists of sequential repositioning of the electron beam, stitching of adjacent images, feature segmentation, and NP size computation. Results show that NPs are best characterized at higher magnifications, since lower magnifications are limited by their pixel size. Increased accuracy of feature characterization at high magnification highlights the importance of automation: many high-magnification acquisitions are required to cover a similar area of the sample at low magnification. Therefore, we also present feature tracking with smart beam positioning as an alternative to blind acquisition of very large image arrays. Feature tracking is achieved by integrating microscope tasks with image processing tasks, and only areas of interest will be imaged at high resolution, reducing total acquisition duration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信