Testing bipolarity.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Kimberly A Barchard, James M Carroll, Shawn Reynolds, James A Russell
{"title":"Testing bipolarity.","authors":"Kimberly A Barchard, James M Carroll, Shawn Reynolds, James A Russell","doi":"10.1037/met0000707","DOIUrl":null,"url":null,"abstract":"<p><p>Many psychological dimensions seem bipolar (e.g., happy-sad, optimism-pessimism, and introversion-extraversion). However, seeming opposites frequently do not act the way researchers predict real opposites would: having correlations near -1, loading on the same factor, and having relations with external variables that are equal in magnitude and opposite in sign. We argue these predictions are often incorrect because the bipolar model has been misspecified or specified too narrowly. We therefore explicitly define a general bipolar model for ideal error-free data and then extend this model to empirical data influenced by random and systematic measurement error. Our model shows the predictions above are correct only under restrictive circumstances that are unlikely to apply in practice. Moreover, if a bipolar dimension is divided into two so that researchers can test bipolarity, our model shows that the correlation between the two can be far from -1; thus, strategies based upon Pearson product-moment correlations and their factor analyses do not test if variables are opposites. Moreover, the two parts need not be mutually exclusive; thus, measures of co-occurrence do not test if variables are opposites. We offer alternative strategies for testing if variables are opposites, strategies based upon censored data analysis. Our model and findings have implications not just for testing bipolarity, but also for associated theory and measurement, and they expose potential artifacts in correlational and dimensional analyses involving any type of negative relations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000707","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many psychological dimensions seem bipolar (e.g., happy-sad, optimism-pessimism, and introversion-extraversion). However, seeming opposites frequently do not act the way researchers predict real opposites would: having correlations near -1, loading on the same factor, and having relations with external variables that are equal in magnitude and opposite in sign. We argue these predictions are often incorrect because the bipolar model has been misspecified or specified too narrowly. We therefore explicitly define a general bipolar model for ideal error-free data and then extend this model to empirical data influenced by random and systematic measurement error. Our model shows the predictions above are correct only under restrictive circumstances that are unlikely to apply in practice. Moreover, if a bipolar dimension is divided into two so that researchers can test bipolarity, our model shows that the correlation between the two can be far from -1; thus, strategies based upon Pearson product-moment correlations and their factor analyses do not test if variables are opposites. Moreover, the two parts need not be mutually exclusive; thus, measures of co-occurrence do not test if variables are opposites. We offer alternative strategies for testing if variables are opposites, strategies based upon censored data analysis. Our model and findings have implications not just for testing bipolarity, but also for associated theory and measurement, and they expose potential artifacts in correlational and dimensional analyses involving any type of negative relations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信