Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Arka Das, Erica Dall'Armellina, Filip Szczepankiewicz, Derek K Jones, Jurgen E Schneider
{"title":"Outlier detection in cardiac diffusion tensor imaging: Shot rejection or robust fitting?","authors":"Sam Coveney, Maryam Afzali, Lars Mueller, Irvin Teh, Arka Das, Erica Dall'Armellina, Filip Szczepankiewicz, Derek K Jones, Jurgen E Schneider","doi":"10.1016/j.media.2024.103386","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental. Multiple voxel outlier detection (MVOD), using a local myocardial neighbourhood, may overcome the shared deficiencies of SR and SVOD for cDTI while keeping the benefits of both. Here, robust fitting methods using M-estimators are derived for both non-linear least squares and weighted least squares fitting, and outlier detection is applied using (i) SVOD; and (ii) SVOD and MVOD. These methods, along with non-robust fitting with/without SR, are applied to cDTI datasets from healthy volunteers and hypertrophic cardiomyopathy patients. Robust fitting methods produce larger group differences with more statistical significance for MD, FA, and E2A, versus non-robust methods, with MVOD giving the largest group differences for MD and FA. Visual analysis demonstrates the superiority of robust-fitting methods over SR, especially when it is difficult to partition the images into good and bad sets. Synthetic experiments confirm that MVOD gives lower root-mean-square-error than SVOD.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103386"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103386","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental. Multiple voxel outlier detection (MVOD), using a local myocardial neighbourhood, may overcome the shared deficiencies of SR and SVOD for cDTI while keeping the benefits of both. Here, robust fitting methods using M-estimators are derived for both non-linear least squares and weighted least squares fitting, and outlier detection is applied using (i) SVOD; and (ii) SVOD and MVOD. These methods, along with non-robust fitting with/without SR, are applied to cDTI datasets from healthy volunteers and hypertrophic cardiomyopathy patients. Robust fitting methods produce larger group differences with more statistical significance for MD, FA, and E2A, versus non-robust methods, with MVOD giving the largest group differences for MD and FA. Visual analysis demonstrates the superiority of robust-fitting methods over SR, especially when it is difficult to partition the images into good and bad sets. Synthetic experiments confirm that MVOD gives lower root-mean-square-error than SVOD.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.