{"title":"Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment.","authors":"Kaori Shiraishi, Takeshi Nakaura, Naoki Kobayashi, Hiroyuki Uetani, Yasunori Nagayama, Masafumi Kidoh, Junji Yatsuda, Ryoma Kurahashi, Tomomi Kamba, Yuichi Yamahita, Toshinori Hirai","doi":"10.1016/j.mri.2024.110308","DOIUrl":null,"url":null,"abstract":"<p><strong>Purposes: </strong>This study aimed to assess the effectiveness of Super-Resolution Deep Learning Reconstruction (SR-DLR) -a deep learning-based technique that enhances image resolution and quality during MRI reconstruction- in improving the image quality of thin-slice 3D T2-weighted imaging (T2WI) and Prostate Imaging-Reporting and Data System (PI-RADS) assessment in prostate Magnetic Resonance Imaging (MRI).</p><p><strong>Methods: </strong>This retrospective study included 33 patients who underwent prostate MRI with SR-DLR between November 2022 and April 2023. Thin-slice 3D-T2WI of the prostate was obtained and reconstructed with and without SR-DLR (matrix: 720 × 720 and 240 × 240, respectively). We calculated the contrast and contrast-to-noise ratio (CNR) between the internal and external glands of the prostate, as well as the slope of pelvic bone and adipose tissue. Two radiologists evaluated qualitative image quality and assessed PI-RADS scores of each reconstruction.</p><p><strong>Results: </strong>The final analysis included 28 male patients (age range: 47-88 years; mean age: 70.8 years). The CNR with SR-DLR was significantly higher than without SR-DLR (1.93 [IQR: 0.79, 3.83] vs. 1.88 [IQR: 0.63, 3.82], p = 0.002). No significant difference in contrast was observed between images with and without SR-DLR (p = 0.864). The slope with SR-DLR was significantly higher than without SR-DLR (0.21 [IQR: 0.15, 0.25] vs. 0.15 [IQR: 0.12, 0.19], p < 0.01). Qualitative scores for contrast, sharpness, artifacts, and overall image quality were significantly higher with SR-DLR than without SR-DLR (p < 0.05 for all). The kappa values for 2D-T2WI and 3D-T2WI increased from 0.694 and 0.640 to 0.870 and 0.827 with SR-DLR for both readers.</p><p><strong>Conclusions: </strong>SR-DLR has the potential to improve image quality and the ability to assess PI-RADS scores in thin-slice 3D-T2WI of the prostate without extending MRI acquisition time.</p><p><strong>Summary: </strong>Super-Resolution Deep Learning Reconstruction (SR-DLR) significantly improved image quality of thin-slice 3D T2-weighted imaging (T2WI) without extending the acquisition time. Additionally, the PI-RADS scores from 3D-T2WI with SR-DLR demonstrated higher agreement with those from 2D-T2WI.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110308"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purposes: This study aimed to assess the effectiveness of Super-Resolution Deep Learning Reconstruction (SR-DLR) -a deep learning-based technique that enhances image resolution and quality during MRI reconstruction- in improving the image quality of thin-slice 3D T2-weighted imaging (T2WI) and Prostate Imaging-Reporting and Data System (PI-RADS) assessment in prostate Magnetic Resonance Imaging (MRI).
Methods: This retrospective study included 33 patients who underwent prostate MRI with SR-DLR between November 2022 and April 2023. Thin-slice 3D-T2WI of the prostate was obtained and reconstructed with and without SR-DLR (matrix: 720 × 720 and 240 × 240, respectively). We calculated the contrast and contrast-to-noise ratio (CNR) between the internal and external glands of the prostate, as well as the slope of pelvic bone and adipose tissue. Two radiologists evaluated qualitative image quality and assessed PI-RADS scores of each reconstruction.
Results: The final analysis included 28 male patients (age range: 47-88 years; mean age: 70.8 years). The CNR with SR-DLR was significantly higher than without SR-DLR (1.93 [IQR: 0.79, 3.83] vs. 1.88 [IQR: 0.63, 3.82], p = 0.002). No significant difference in contrast was observed between images with and without SR-DLR (p = 0.864). The slope with SR-DLR was significantly higher than without SR-DLR (0.21 [IQR: 0.15, 0.25] vs. 0.15 [IQR: 0.12, 0.19], p < 0.01). Qualitative scores for contrast, sharpness, artifacts, and overall image quality were significantly higher with SR-DLR than without SR-DLR (p < 0.05 for all). The kappa values for 2D-T2WI and 3D-T2WI increased from 0.694 and 0.640 to 0.870 and 0.827 with SR-DLR for both readers.
Conclusions: SR-DLR has the potential to improve image quality and the ability to assess PI-RADS scores in thin-slice 3D-T2WI of the prostate without extending MRI acquisition time.
Summary: Super-Resolution Deep Learning Reconstruction (SR-DLR) significantly improved image quality of thin-slice 3D T2-weighted imaging (T2WI) without extending the acquisition time. Additionally, the PI-RADS scores from 3D-T2WI with SR-DLR demonstrated higher agreement with those from 2D-T2WI.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.