Development of an sRNA-mediated conditional knockdown system for Chlamydia trachomatis.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2024-12-13 DOI:10.1128/mbio.02545-24
Janina Ehses, Kevin Wang, Asha Densi, Cuper Ramirez, Ming Tan, Christine Sütterlin
{"title":"Development of an sRNA-mediated conditional knockdown system for <i>Chlamydia trachomatis</i>.","authors":"Janina Ehses, Kevin Wang, Asha Densi, Cuper Ramirez, Ming Tan, Christine Sütterlin","doi":"10.1128/mbio.02545-24","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a new <i>Chlamydia trachomatis</i> protein depletion method that uses an engineered small RNA (sRNA) to inhibit translation of a target gene. In proof-of-principle experiments, we induced functional knockdown of IncA, a fusion-mediating inclusion membrane protein, as shown with Western blots, loss of IncA staining at the inclusion membrane, and production of multiple chlamydial inclusions within an infected cell. These effects were titratable and reversible. To test for polar effects, we separately targeted the inclusion membrane proteins IncE and IncG, which are expressed from the <i>incDEFG</i> operon. Knockdown of IncE caused loss of IncE and its interacting host protein SNX6 at the inclusion membrane, without affecting IncG protein levels. Similarly, IncG knockdown significantly reduced IncG levels and prevented recruitment of its interacting host protein 14-3-3β, without altering IncE protein levels. These data provide the first genetic evidence that IncE and IncG are necessary for the recruitment of SNX6 and 14-3-3β, respectively, demonstrating the value of this knockdown approach. We also successfully depleted the major chlamydial surface protein, major outer membrane protein (MOMP), which is encoded by a likely essential gene that has not been previously disrupted or knocked down. MOMP knockdown caused severe defects in bacterial morphology and progeny production. Thus, our sRNA-based approach has broad potential as a conditional knockdown method for studying the function of <i>C. trachomatis</i> genes, including essential genes and genes in an operon.IMPORTANCEWe describe a new method to reduce protein levels of a selected gene in the pathogenic bacterium <i>Chlamydia trachomatis</i>. This approach utilizes an engineered small RNA (sRNA) to inhibit translation of the mRNA for a target gene and produced inducible and reversible protein knockdown. Our method successfully knocked down four proteins, including a likely essential gene and individual genes in an operon, without altering protein levels of a neighboring gene. This conditional knockdown method will be useful for studying the function of genes in <i>Chlamydia</i>. It also has the potential to be applied to other obligate intracellular bacteria, including <i>Rickettsia</i> and <i>Coxiella</i>.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0254524"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02545-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a new Chlamydia trachomatis protein depletion method that uses an engineered small RNA (sRNA) to inhibit translation of a target gene. In proof-of-principle experiments, we induced functional knockdown of IncA, a fusion-mediating inclusion membrane protein, as shown with Western blots, loss of IncA staining at the inclusion membrane, and production of multiple chlamydial inclusions within an infected cell. These effects were titratable and reversible. To test for polar effects, we separately targeted the inclusion membrane proteins IncE and IncG, which are expressed from the incDEFG operon. Knockdown of IncE caused loss of IncE and its interacting host protein SNX6 at the inclusion membrane, without affecting IncG protein levels. Similarly, IncG knockdown significantly reduced IncG levels and prevented recruitment of its interacting host protein 14-3-3β, without altering IncE protein levels. These data provide the first genetic evidence that IncE and IncG are necessary for the recruitment of SNX6 and 14-3-3β, respectively, demonstrating the value of this knockdown approach. We also successfully depleted the major chlamydial surface protein, major outer membrane protein (MOMP), which is encoded by a likely essential gene that has not been previously disrupted or knocked down. MOMP knockdown caused severe defects in bacterial morphology and progeny production. Thus, our sRNA-based approach has broad potential as a conditional knockdown method for studying the function of C. trachomatis genes, including essential genes and genes in an operon.IMPORTANCEWe describe a new method to reduce protein levels of a selected gene in the pathogenic bacterium Chlamydia trachomatis. This approach utilizes an engineered small RNA (sRNA) to inhibit translation of the mRNA for a target gene and produced inducible and reversible protein knockdown. Our method successfully knocked down four proteins, including a likely essential gene and individual genes in an operon, without altering protein levels of a neighboring gene. This conditional knockdown method will be useful for studying the function of genes in Chlamydia. It also has the potential to be applied to other obligate intracellular bacteria, including Rickettsia and Coxiella.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信