FSTL1 and TLR4 interact with PEDV structural proteins to promote virus adsorption to host cells.

IF 4 2区 医学 Q2 VIROLOGY
Chunyun Liu, Ning Kong, Hailong Liu, Yu Zhang, Wenzhen Qin, Wenli Zhao, Xinyu Yang, Yahe Wang, Xinyu Cao, Tian Liu, Yuchang Liu, He Sun, Wu Tong, Hai Yu, Hao Zheng, Daoliang Lan, Shengsong Xie, Guangzhi Tong, Tongling Shan
{"title":"FSTL1 and TLR4 interact with PEDV structural proteins to promote virus adsorption to host cells.","authors":"Chunyun Liu, Ning Kong, Hailong Liu, Yu Zhang, Wenzhen Qin, Wenli Zhao, Xinyu Yang, Yahe Wang, Xinyu Cao, Tian Liu, Yuchang Liu, He Sun, Wu Tong, Hai Yu, Hao Zheng, Daoliang Lan, Shengsong Xie, Guangzhi Tong, Tongling Shan","doi":"10.1128/jvi.01837-24","DOIUrl":null,"url":null,"abstract":"<p><p>Infection with porcine epidemic diarrhea virus (PEDV) results in enormous economic damage to the global swine industry. PEDV starts its life cycle by binding to the receptors of host cells and adsorbing onto the cellular surfaces. However, it is still unknown how PEDV adsorbs onto the surface of host cells and the mechanism beneath the interplay of host cell transmembrane protein with PEDV proteins. FSTL1, which is a secreted glycoprotein, participates in diverse pathological and physiological processes, including immune modulation and cell proliferation and differentiation. The transmembrane protein, TLR4, serves as a pattern recognition receptor recognizing a broad spectrum of pathogens, which exerts a crucial effect on the host immune system. In this study, we identified that FSTL1 promoted PEDV infection. Further studies demonstrated the interactive relationship between FSTL1 and PEDV structural proteins (N and S2). In addition, we also confirmed that TLR4 interacted with FSTL1 and PEDV N, S1, and S2 proteins on the cell surface. Moreover, FSTL1 promoted the interaction of TLR4 and PEDV and induced viral adsorption to host cells. This study offers explicit evidence that FSTL1 and TLR4 act as mediators for host cell adsorption of PEDV by interacting with PEDV N/S proteins.IMPORTANCEAs a highly infectious porcine epidemic diarrhea virus (PEDV)-induced intestinal condition of swine, porcine epidemic diarrhea (PED) results in a 100% death rate among suckling piglets and poses a serious economic burden to global swine farming. Therefore, it is essential to investigate the mechanism of virus infection, replication, and proliferation. Virus begins its life cycle by binding to the receptor of host cells and adsorbing onto the cellular surfaces. However, it remains unclear how PEDV adsorbs onto the host cell surfaces. This study revealed that host protein FSTL1 interacted with the PEDV N and S2 proteins, while TLR4 interacted with the FSTL1 and PEDV proteins (N, S1, and S2). Moreover, we thoroughly and methodically demonstrated that FSTL1 was engaged in the PEDV internalization and attachment processes by promoting the recognition of PEDV N\\S proteins by TLR4 and induced the viral adsorption to host cells.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0183724"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01837-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Infection with porcine epidemic diarrhea virus (PEDV) results in enormous economic damage to the global swine industry. PEDV starts its life cycle by binding to the receptors of host cells and adsorbing onto the cellular surfaces. However, it is still unknown how PEDV adsorbs onto the surface of host cells and the mechanism beneath the interplay of host cell transmembrane protein with PEDV proteins. FSTL1, which is a secreted glycoprotein, participates in diverse pathological and physiological processes, including immune modulation and cell proliferation and differentiation. The transmembrane protein, TLR4, serves as a pattern recognition receptor recognizing a broad spectrum of pathogens, which exerts a crucial effect on the host immune system. In this study, we identified that FSTL1 promoted PEDV infection. Further studies demonstrated the interactive relationship between FSTL1 and PEDV structural proteins (N and S2). In addition, we also confirmed that TLR4 interacted with FSTL1 and PEDV N, S1, and S2 proteins on the cell surface. Moreover, FSTL1 promoted the interaction of TLR4 and PEDV and induced viral adsorption to host cells. This study offers explicit evidence that FSTL1 and TLR4 act as mediators for host cell adsorption of PEDV by interacting with PEDV N/S proteins.IMPORTANCEAs a highly infectious porcine epidemic diarrhea virus (PEDV)-induced intestinal condition of swine, porcine epidemic diarrhea (PED) results in a 100% death rate among suckling piglets and poses a serious economic burden to global swine farming. Therefore, it is essential to investigate the mechanism of virus infection, replication, and proliferation. Virus begins its life cycle by binding to the receptor of host cells and adsorbing onto the cellular surfaces. However, it remains unclear how PEDV adsorbs onto the host cell surfaces. This study revealed that host protein FSTL1 interacted with the PEDV N and S2 proteins, while TLR4 interacted with the FSTL1 and PEDV proteins (N, S1, and S2). Moreover, we thoroughly and methodically demonstrated that FSTL1 was engaged in the PEDV internalization and attachment processes by promoting the recognition of PEDV N\S proteins by TLR4 and induced the viral adsorption to host cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信