{"title":"Oxymatrine Inhibits PD-L1 by Downregulating IFN-γ to Promote Ferroptosis and Enhance Anti-PD-L1 Efficacy in Liver Cancer.","authors":"Yixi Nong, Houji Qin, Liyan Wei, Xi Wei, Jiannan Lv, Xiaoyi Huang, Biaoliang Wu","doi":"10.2147/JHC.S492582","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Oxymatrine has potent anti-cancer activity, but its exact mechanism in liver cancer remains elusive. The present study was designated to explore oxymatrine's effect and the potential mechanism on Programmed cell death-ligand 1 (PD-L1) expression and ferroptosis in liver cancer.</p><p><strong>Methods: </strong>Oxymatrine's influence on PD-L1 expression and ferroptosis-related proteins in liver cancer cells was explored in vitro and in vivo utilizing Western blotting, qRT-PCR, immunofluorescence, ELISA, H&E staining, immunohistochemistry, as well as detection of Fe<sup>2+</sup>, ROS, and MDA.</p><p><strong>Results: </strong>The in-vivo results showed that xenotransplanted tumor mice with drug interventions (oxymatrine, anti-PD-L1, and combination groups) exhibited inhibited tumor growth compared to control mice. Relative to anti-PD-L1 administration alone, the combined treatment inhibited tumor growth more significantly, along with reduced interferon-γ (IFN-γ) expression in peripheral blood and remarkably increased tumor immune lymphocyte (CD4<sup>+</sup> T and CD8<sup>+</sup> T) infiltration in cancer tissues. Meanwhile, PD-L1, xCT, and GPX4 protein levels in the combination group were significantly downregulated. According to the in vitro results, IFN-γ promoted PD-L1, xCT, and GPX4 protein levels in liver cancer cell lines. Oxymatrine reversed IFN-γ-induced upregulation of PD-L1 expression; moreover, it downregulated xCT and GPX4 protein levels in liver cancer cells and promoted intracellular Fe<sup>2+</sup>, ROS, and MDA levels.</p><p><strong>Conclusion: </strong>Oxymatrine promotes tumor immune response and ferroptosis in liver cancer by downregulating IFN-γ and synergistically enhances the inhibitory effect of anti-PD-L1 on liver cancer.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"11 ","pages":"2427-2440"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S492582","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Oxymatrine has potent anti-cancer activity, but its exact mechanism in liver cancer remains elusive. The present study was designated to explore oxymatrine's effect and the potential mechanism on Programmed cell death-ligand 1 (PD-L1) expression and ferroptosis in liver cancer.
Methods: Oxymatrine's influence on PD-L1 expression and ferroptosis-related proteins in liver cancer cells was explored in vitro and in vivo utilizing Western blotting, qRT-PCR, immunofluorescence, ELISA, H&E staining, immunohistochemistry, as well as detection of Fe2+, ROS, and MDA.
Results: The in-vivo results showed that xenotransplanted tumor mice with drug interventions (oxymatrine, anti-PD-L1, and combination groups) exhibited inhibited tumor growth compared to control mice. Relative to anti-PD-L1 administration alone, the combined treatment inhibited tumor growth more significantly, along with reduced interferon-γ (IFN-γ) expression in peripheral blood and remarkably increased tumor immune lymphocyte (CD4+ T and CD8+ T) infiltration in cancer tissues. Meanwhile, PD-L1, xCT, and GPX4 protein levels in the combination group were significantly downregulated. According to the in vitro results, IFN-γ promoted PD-L1, xCT, and GPX4 protein levels in liver cancer cell lines. Oxymatrine reversed IFN-γ-induced upregulation of PD-L1 expression; moreover, it downregulated xCT and GPX4 protein levels in liver cancer cells and promoted intracellular Fe2+, ROS, and MDA levels.
Conclusion: Oxymatrine promotes tumor immune response and ferroptosis in liver cancer by downregulating IFN-γ and synergistically enhances the inhibitory effect of anti-PD-L1 on liver cancer.