Exploring and Predicting HIV Preexposure Prophylaxis Adherence Patterns Among Men Who Have Sex With Men: Randomized Controlled Longitudinal Study of an mHealth Intervention in Western China.
{"title":"Exploring and Predicting HIV Preexposure Prophylaxis Adherence Patterns Among Men Who Have Sex With Men: Randomized Controlled Longitudinal Study of an mHealth Intervention in Western China.","authors":"Bing Lin, Jiayan Li, Jiaxiu Liu, Wei He, Haiying Pan, Xiaoni Zhong","doi":"10.2196/58920","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Preexposure prophylaxis (PrEP) is an effective strategy to reduce the risk of HIV infection. However, the efficacy of PrEP is highly dependent on adherence. Meanwhile, adherence changes over time, making it difficult to manage effectively.</p><p><strong>Objective: </strong>Our study aimed to explore and predict the patterns of change in PrEP adherence among men who have sex with men (MSM) and evaluate the impact of the WeChat-based reminder intervention on adherence, thus providing more information for PrEP implementation strategies.</p><p><strong>Methods: </strong>From November 2019 to June 2023, in a randomized controlled longitudinal study of the PrEP demonstration project in Western China (Chongqing, Sichuan, and Xinjiang) based on a mobile health (mHealth) reminder intervention, participants were randomly divided into reminder and no-reminder groups, with those in the reminder group receiving daily reminders based on the WeChat app. Participants were followed up and self-reported their medication adherence every 12 weeks for a total of 5 follow-up visits. We used the growth mixture model (GMM) to explore potential categories and longitudinal trajectories of adherence among MSM, and patterns of change in PrEP adherence were predicted and evaluated based on the decision tree.</p><p><strong>Results: </strong>A total of 446 MSM were included in the analysis. The GMM identified 3 trajectories of adherence: intermediate adherence group (n=34, 7.62%), low adherence ascending group (n=126, 28.25%), and high adherence decline group (n=286, 64.13%). We included 8 variables that were significant in the univariate analysis in the decision tree prediction model. We found 4 factors and 8 prediction rules, and the results showed that HIV knowledge score, education attainment, mHealth intervention, and HIV testing were key nodes in the patterns of change in adherence. After 10-fold cross-validation, the final prediction model had an accuracy of 75%, and the classification accuracy of low and intermediate adherence was 78.12%.</p><p><strong>Conclusions: </strong>The WeChat-based reminder intervention was beneficial for adherence. A short set of questions and prediction rules, which can be applied in future large-scale validation studies, aimed at developing and validating a short adherence assessment tool and implementing it in PrEP practices among MSM.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"12 ","pages":"e58920"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/58920","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Preexposure prophylaxis (PrEP) is an effective strategy to reduce the risk of HIV infection. However, the efficacy of PrEP is highly dependent on adherence. Meanwhile, adherence changes over time, making it difficult to manage effectively.
Objective: Our study aimed to explore and predict the patterns of change in PrEP adherence among men who have sex with men (MSM) and evaluate the impact of the WeChat-based reminder intervention on adherence, thus providing more information for PrEP implementation strategies.
Methods: From November 2019 to June 2023, in a randomized controlled longitudinal study of the PrEP demonstration project in Western China (Chongqing, Sichuan, and Xinjiang) based on a mobile health (mHealth) reminder intervention, participants were randomly divided into reminder and no-reminder groups, with those in the reminder group receiving daily reminders based on the WeChat app. Participants were followed up and self-reported their medication adherence every 12 weeks for a total of 5 follow-up visits. We used the growth mixture model (GMM) to explore potential categories and longitudinal trajectories of adherence among MSM, and patterns of change in PrEP adherence were predicted and evaluated based on the decision tree.
Results: A total of 446 MSM were included in the analysis. The GMM identified 3 trajectories of adherence: intermediate adherence group (n=34, 7.62%), low adherence ascending group (n=126, 28.25%), and high adherence decline group (n=286, 64.13%). We included 8 variables that were significant in the univariate analysis in the decision tree prediction model. We found 4 factors and 8 prediction rules, and the results showed that HIV knowledge score, education attainment, mHealth intervention, and HIV testing were key nodes in the patterns of change in adherence. After 10-fold cross-validation, the final prediction model had an accuracy of 75%, and the classification accuracy of low and intermediate adherence was 78.12%.
Conclusions: The WeChat-based reminder intervention was beneficial for adherence. A short set of questions and prediction rules, which can be applied in future large-scale validation studies, aimed at developing and validating a short adherence assessment tool and implementing it in PrEP practices among MSM.
期刊介绍:
JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636.
The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics.
JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.