A tutorial on pharmacometric Markov models.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Qing Xi Ooi, Elodie Plan, Martin Bergstrand
{"title":"A tutorial on pharmacometric Markov models.","authors":"Qing Xi Ooi, Elodie Plan, Martin Bergstrand","doi":"10.1002/psp4.13278","DOIUrl":null,"url":null,"abstract":"<p><p>The Markov chain is a stochastic process in which the future value of a variable is conditionally independent of the past, given its present value. Data with Markovian features are characterized by: frequent observations relative to the expected changes in values, many consecutive same-category or similar-value observations at the individual level, and a positive correlation observed between the current and previous values for that variable. In drug development and clinical settings, the data available commonly present Markovian features and are increasingly often modeled using Markov elements or dedicated Markov models. This tutorial presents the main characteristics, evaluations, and applications of various Markov modeling approaches including the discrete-time Markov models (DTMM), continuous-time Markov models (CTMM), hidden Markov models, and item-response theory model with Markov sub-models. The tutorial has a specific emphasis on the use of DTMM and CTMM for modeling ordered-categorical data with Markovian features. Although the main body of this tutorial is written in a software-neutral manner, annotated NONMEM code for all key Markov models is included in the Supplementary Information.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13278","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The Markov chain is a stochastic process in which the future value of a variable is conditionally independent of the past, given its present value. Data with Markovian features are characterized by: frequent observations relative to the expected changes in values, many consecutive same-category or similar-value observations at the individual level, and a positive correlation observed between the current and previous values for that variable. In drug development and clinical settings, the data available commonly present Markovian features and are increasingly often modeled using Markov elements or dedicated Markov models. This tutorial presents the main characteristics, evaluations, and applications of various Markov modeling approaches including the discrete-time Markov models (DTMM), continuous-time Markov models (CTMM), hidden Markov models, and item-response theory model with Markov sub-models. The tutorial has a specific emphasis on the use of DTMM and CTMM for modeling ordered-categorical data with Markovian features. Although the main body of this tutorial is written in a software-neutral manner, annotated NONMEM code for all key Markov models is included in the Supplementary Information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信