{"title":"EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data.","authors":"Punam Bedi, Surbhi Rani, Bhavna Gupta, Veenu Bhasin, Pushkar Gole","doi":"10.1016/j.cmpb.2024.108553","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Early breast cancer subtypes classification improves the survival rate as it facilitates prognosis of the patient. In literature this problem was prominently solved by various Machine Learning and Deep Learning techniques. However, these studies have three major shortcomings: huge Trainable Weight Parameters (TWP), suffer from low performance and class imbalance problem.</p><p><strong>Methods: </strong>This paper proposes a lightweight model named EpiBrCan-Lite for classifying breast cancer subtypes using DNA methylation data. This model encompasses three blocks namely Data Encoding, TransGRU, and Classification blocks. In Data Encoding block, the input features are encoded into equal sized chunks and then passed down to TransGRU block which is a modified version of traditional Transformer Encoder (TE). In TransGRU block, MLP module of traditional TE is replaced by GRU module, consisting of two GRU layers to reduce TWP and capture the long-range dependencies of input feature data. Furthermore, output of TransGRU block is passed to Classification block for classifying breast cancer into their subtypes.</p><p><strong>Results: </strong>The proposed model is validated using Accuracy, Precision, Recall, F1-score, FPR, and FNR metrics on TCGA breast cancer dataset. This dataset suffers from the class imbalance problem which is mitigated using Synthetic Minority Oversampling Technique (SMOTE). Experimentation results demonstrate that EpiBrCan-Lite model attained 95.85 % accuracy, 95.96 % recall, 95.85 % precision, 95.90 % F1-score, 1.03 % FPR, and 4.12 % FNR despite of utilizing only 1/1500 of TWP than other state-of-the-art models.</p><p><strong>Conclusion: </strong>EpiBrCan-Lite model is efficiently classifying breast cancer subtypes, and being lightweight, it is suitable to be deployed on low computational powered devices.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108553"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Early breast cancer subtypes classification improves the survival rate as it facilitates prognosis of the patient. In literature this problem was prominently solved by various Machine Learning and Deep Learning techniques. However, these studies have three major shortcomings: huge Trainable Weight Parameters (TWP), suffer from low performance and class imbalance problem.
Methods: This paper proposes a lightweight model named EpiBrCan-Lite for classifying breast cancer subtypes using DNA methylation data. This model encompasses three blocks namely Data Encoding, TransGRU, and Classification blocks. In Data Encoding block, the input features are encoded into equal sized chunks and then passed down to TransGRU block which is a modified version of traditional Transformer Encoder (TE). In TransGRU block, MLP module of traditional TE is replaced by GRU module, consisting of two GRU layers to reduce TWP and capture the long-range dependencies of input feature data. Furthermore, output of TransGRU block is passed to Classification block for classifying breast cancer into their subtypes.
Results: The proposed model is validated using Accuracy, Precision, Recall, F1-score, FPR, and FNR metrics on TCGA breast cancer dataset. This dataset suffers from the class imbalance problem which is mitigated using Synthetic Minority Oversampling Technique (SMOTE). Experimentation results demonstrate that EpiBrCan-Lite model attained 95.85 % accuracy, 95.96 % recall, 95.85 % precision, 95.90 % F1-score, 1.03 % FPR, and 4.12 % FNR despite of utilizing only 1/1500 of TWP than other state-of-the-art models.
Conclusion: EpiBrCan-Lite model is efficiently classifying breast cancer subtypes, and being lightweight, it is suitable to be deployed on low computational powered devices.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.