EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data.

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Punam Bedi, Surbhi Rani, Bhavna Gupta, Veenu Bhasin, Pushkar Gole
{"title":"EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data.","authors":"Punam Bedi, Surbhi Rani, Bhavna Gupta, Veenu Bhasin, Pushkar Gole","doi":"10.1016/j.cmpb.2024.108553","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Early breast cancer subtypes classification improves the survival rate as it facilitates prognosis of the patient. In literature this problem was prominently solved by various Machine Learning and Deep Learning techniques. However, these studies have three major shortcomings: huge Trainable Weight Parameters (TWP), suffer from low performance and class imbalance problem.</p><p><strong>Methods: </strong>This paper proposes a lightweight model named EpiBrCan-Lite for classifying breast cancer subtypes using DNA methylation data. This model encompasses three blocks namely Data Encoding, TransGRU, and Classification blocks. In Data Encoding block, the input features are encoded into equal sized chunks and then passed down to TransGRU block which is a modified version of traditional Transformer Encoder (TE). In TransGRU block, MLP module of traditional TE is replaced by GRU module, consisting of two GRU layers to reduce TWP and capture the long-range dependencies of input feature data. Furthermore, output of TransGRU block is passed to Classification block for classifying breast cancer into their subtypes.</p><p><strong>Results: </strong>The proposed model is validated using Accuracy, Precision, Recall, F1-score, FPR, and FNR metrics on TCGA breast cancer dataset. This dataset suffers from the class imbalance problem which is mitigated using Synthetic Minority Oversampling Technique (SMOTE). Experimentation results demonstrate that EpiBrCan-Lite model attained 95.85 % accuracy, 95.96 % recall, 95.85 % precision, 95.90 % F1-score, 1.03 % FPR, and 4.12 % FNR despite of utilizing only 1/1500 of TWP than other state-of-the-art models.</p><p><strong>Conclusion: </strong>EpiBrCan-Lite model is efficiently classifying breast cancer subtypes, and being lightweight, it is suitable to be deployed on low computational powered devices.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108553"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Early breast cancer subtypes classification improves the survival rate as it facilitates prognosis of the patient. In literature this problem was prominently solved by various Machine Learning and Deep Learning techniques. However, these studies have three major shortcomings: huge Trainable Weight Parameters (TWP), suffer from low performance and class imbalance problem.

Methods: This paper proposes a lightweight model named EpiBrCan-Lite for classifying breast cancer subtypes using DNA methylation data. This model encompasses three blocks namely Data Encoding, TransGRU, and Classification blocks. In Data Encoding block, the input features are encoded into equal sized chunks and then passed down to TransGRU block which is a modified version of traditional Transformer Encoder (TE). In TransGRU block, MLP module of traditional TE is replaced by GRU module, consisting of two GRU layers to reduce TWP and capture the long-range dependencies of input feature data. Furthermore, output of TransGRU block is passed to Classification block for classifying breast cancer into their subtypes.

Results: The proposed model is validated using Accuracy, Precision, Recall, F1-score, FPR, and FNR metrics on TCGA breast cancer dataset. This dataset suffers from the class imbalance problem which is mitigated using Synthetic Minority Oversampling Technique (SMOTE). Experimentation results demonstrate that EpiBrCan-Lite model attained 95.85 % accuracy, 95.96 % recall, 95.85 % precision, 95.90 % F1-score, 1.03 % FPR, and 4.12 % FNR despite of utilizing only 1/1500 of TWP than other state-of-the-art models.

Conclusion: EpiBrCan-Lite model is efficiently classifying breast cancer subtypes, and being lightweight, it is suitable to be deployed on low computational powered devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信