Naeem Abdul Ghafoor, Sabina Rasuli, Özgür Tanriverdi, Ayşegül Yildiz
{"title":"Investigating the P53-dependent anti-cancer effect of ibutamoren in human cancer cell lines","authors":"Naeem Abdul Ghafoor, Sabina Rasuli, Özgür Tanriverdi, Ayşegül Yildiz","doi":"10.1111/bcpt.14111","DOIUrl":null,"url":null,"abstract":"<p>The MDM2-p53 pathway plays a pivotal role in regulating cell cycle and apoptosis, with its dysfunction contributing to approximately 50% of human malignancies. MDM2, an E3 ubiquitin ligase, targets the tumour suppressor p53 for degradation, thereby promoting uncontrolled cell growth in cancers. Inhibiting the MDM2-p53 interaction represents a promising therapeutic strategy for reactivating p53’s tumour-suppressive functions. This study explored the potential of ibutamoren (IBU) as a novel inhibitor of MDM2. In silico analyses utilizing molecular modelling revealed that IBU has a low IC<sub>50</sub> for MDM2 inhibition and favourably binds to the p53-binding pocket of MDM2. In vitro experiments demonstrated that IBU treatment reduced the viability of immortalized cancer cell lines with a functional MDM2-p53 pathway but not in cell lines where this pathway harboured damaging mutations. This trend was further supported by RT-qPCR analysis, which showed differential expression of two p53 target genes upon IBU treatment in cell lines with wild MDM2-p53 pathways but not in those harbouring damaging mutations. These findings provide preliminary evidence supporting IBU's anticancer activity, plausibly through the MDM2-p53 pathway, and suggest that further studies are warranted to explore its mechanism of action and potential development as a lead compound in oncology research.</p>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.14111","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The MDM2-p53 pathway plays a pivotal role in regulating cell cycle and apoptosis, with its dysfunction contributing to approximately 50% of human malignancies. MDM2, an E3 ubiquitin ligase, targets the tumour suppressor p53 for degradation, thereby promoting uncontrolled cell growth in cancers. Inhibiting the MDM2-p53 interaction represents a promising therapeutic strategy for reactivating p53’s tumour-suppressive functions. This study explored the potential of ibutamoren (IBU) as a novel inhibitor of MDM2. In silico analyses utilizing molecular modelling revealed that IBU has a low IC50 for MDM2 inhibition and favourably binds to the p53-binding pocket of MDM2. In vitro experiments demonstrated that IBU treatment reduced the viability of immortalized cancer cell lines with a functional MDM2-p53 pathway but not in cell lines where this pathway harboured damaging mutations. This trend was further supported by RT-qPCR analysis, which showed differential expression of two p53 target genes upon IBU treatment in cell lines with wild MDM2-p53 pathways but not in those harbouring damaging mutations. These findings provide preliminary evidence supporting IBU's anticancer activity, plausibly through the MDM2-p53 pathway, and suggest that further studies are warranted to explore its mechanism of action and potential development as a lead compound in oncology research.
期刊介绍:
Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.