In-situ construction of vertically Fe doped CoMoP nanosheet honeycomb as bifunctional electrocatalysts for efficient overall water splitting.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Bingxin Zhao, Wenyue Jiang, Ziting Li, Peng Zhou, Xiaoshuang Chen, Jinping Wang, Rui Yang, Chunling Zuo
{"title":"In-situ construction of vertically Fe doped CoMoP nanosheet honeycomb as bifunctional electrocatalysts for efficient overall water splitting.","authors":"Bingxin Zhao, Wenyue Jiang, Ziting Li, Peng Zhou, Xiaoshuang Chen, Jinping Wang, Rui Yang, Chunling Zuo","doi":"10.1016/j.jcis.2024.12.045","DOIUrl":null,"url":null,"abstract":"<p><p>The bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) are crucial pivot in water electrolysis territory. In this study, vertically Fe incorporated CoMoP (Fe-CoMoP) nanosheet honeycomb product with super-hydrophilic and aerophobic features was projected and generated through the straightforward hydrothermal technique and phosphatized process. The Fe-CoMoP catalyst exhibits more distinguished intrinsic activity, accessible active sites, effective charge transfer and weak adhesion of gas bubbles. The overpotentials of dual-function Fe-CoMoP are 87.1 mV for HER and 244.4 mV for OER to drive the current density of 10 mA cm<sup>-2</sup>. At room temperature, the overall water splitting reaction of Fe-CoMoP as cathode and anode is carried out at 1.54 V to reach 10 mA cm<sup>-2</sup> with good stability. Simultaneously, the Fe-CoMoP couple electrolyzer also presents remarkable water splitting activity and durability in simulated industry circumstances of 6 M KOH, 60 °C at 500 mA cm<sup>-2</sup>, which are close to practical conditions.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1094-1103"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.045","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) are crucial pivot in water electrolysis territory. In this study, vertically Fe incorporated CoMoP (Fe-CoMoP) nanosheet honeycomb product with super-hydrophilic and aerophobic features was projected and generated through the straightforward hydrothermal technique and phosphatized process. The Fe-CoMoP catalyst exhibits more distinguished intrinsic activity, accessible active sites, effective charge transfer and weak adhesion of gas bubbles. The overpotentials of dual-function Fe-CoMoP are 87.1 mV for HER and 244.4 mV for OER to drive the current density of 10 mA cm-2. At room temperature, the overall water splitting reaction of Fe-CoMoP as cathode and anode is carried out at 1.54 V to reach 10 mA cm-2 with good stability. Simultaneously, the Fe-CoMoP couple electrolyzer also presents remarkable water splitting activity and durability in simulated industry circumstances of 6 M KOH, 60 °C at 500 mA cm-2, which are close to practical conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信