High-performance aqueous zinc-ion hybrid micro-supercapacitors enabled by oxygen-rich functionalised MXene nanofibres.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-07 DOI:10.1016/j.jcis.2024.12.038
Yamin Feng, Weifeng Liu, Haineng Bai, Yan Zhang, Yunxiao Du, Yongqiang Liu, Long Zhang
{"title":"High-performance aqueous zinc-ion hybrid micro-supercapacitors enabled by oxygen-rich functionalised MXene nanofibres.","authors":"Yamin Feng, Weifeng Liu, Haineng Bai, Yan Zhang, Yunxiao Du, Yongqiang Liu, Long Zhang","doi":"10.1016/j.jcis.2024.12.038","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs. Herein, a deep alkalisation strategy was developed to synthesise oxygen-rich, functionalised MXene (O-MXene) nanofibres to solve these problems. Compared with the traditional 2D few-layered Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene electrode, O-MXene electrodes exhibit an interconnected, three-dimensional (3D) microstructure and ample oxygen functional groups, enhancing Zn<sup>2+</sup> affinity and improving capacitance and rate performance. First-principles calculations further reveal the enhanced interactions between O-MXene electrodes and Zn<sup>2+</sup> supported by atomic interaction, electronic behaviour and orbital hybridization. The AZIHMSCs fabricated with an O-MXene film anode and a MnO<sub>2</sub>-multiwalled carbon nanotubes (MnO<sub>2</sub>-MWCNTs) film cathode exhibit excellent energy density (130.6 μWh cm<sup>-2</sup>), power density (9.5 mW cm<sup>-2</sup>), cycling stability (93.29 % after 5000 cycles) and flexibility (98.43 % capacitance retained at 120° bending). This study will open new avenues for modifying MXene materials and next-generation high-performance AZIHMSCs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1085-1093"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on Ti3C2Tx MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) Ti3C2Tx MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs. Herein, a deep alkalisation strategy was developed to synthesise oxygen-rich, functionalised MXene (O-MXene) nanofibres to solve these problems. Compared with the traditional 2D few-layered Ti3C2Tx MXene electrode, O-MXene electrodes exhibit an interconnected, three-dimensional (3D) microstructure and ample oxygen functional groups, enhancing Zn2+ affinity and improving capacitance and rate performance. First-principles calculations further reveal the enhanced interactions between O-MXene electrodes and Zn2+ supported by atomic interaction, electronic behaviour and orbital hybridization. The AZIHMSCs fabricated with an O-MXene film anode and a MnO2-multiwalled carbon nanotubes (MnO2-MWCNTs) film cathode exhibit excellent energy density (130.6 μWh cm-2), power density (9.5 mW cm-2), cycling stability (93.29 % after 5000 cycles) and flexibility (98.43 % capacitance retained at 120° bending). This study will open new avenues for modifying MXene materials and next-generation high-performance AZIHMSCs.

由富氧功能化MXene纳米纤维实现的高性能水性锌离子杂化微型超级电容器。
锌离子混合微型超级电容器具有高功率密度、中等能量密度、良好的循环寿命和优良的安全性等优点,是微储能的理想选择。其中,基于Ti3C2Tx MXene阳极和电池型阴极的AZIHMSCs具有较好的性能。然而,二维(2D) Ti3C2Tx MXene电极存在固有的再堆积问题和-F表面终止,阻碍了离子扩散,最终降低了相应AZIHMSCs的储能能力。在此,研究人员开发了一种深度碱化策略来合成富氧、功能化的MXene (O-MXene)纳米纤维来解决这些问题。与传统的二维少层Ti3C2Tx MXene电极相比,O-MXene电极具有相互连接的三维(3D)微观结构和丰富的氧官能团,增强了Zn2+亲和力,提高了电容和速率性能。第一性原理计算进一步揭示了O-MXene电极与Zn2+之间通过原子相互作用、电子行为和轨道杂化而增强的相互作用。由O-MXene薄膜阳极和MnO2-MWCNTs薄膜阴极制备的AZIHMSCs具有优异的能量密度(130.6 μWh cm-2)、功率密度(9.5 mW cm-2)、循环稳定性(5000次循环后93.29%)和柔韧性(120°弯曲时保持98.43%的电容)。该研究将为改性MXene材料和下一代高性能AZIHMSCs开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
文献相关原料
公司名称
产品信息
阿拉丁
ZnSO4·7H2O
阿拉丁
acrylamide
阿拉丁
N, N′-methylenebisacrylamide
阿拉丁
K2S2O8
阿拉丁
sodium dodecyl sulfate
阿拉丁
KMnO4
阿拉丁
MnSO4·H2O
阿拉丁
KOH
阿拉丁
LiF
阿拉丁
ZnSO4·7H2O
阿拉丁
acrylamide
阿拉丁
N, N′-methylenebisacrylamide
阿拉丁
K2S2O8
阿拉丁
sodium dodecyl sulfate
阿拉丁
KMnO4
阿拉丁
MnSO4·H2O
阿拉丁
KOH
阿拉丁
LiF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信