A GH1 β-glucosidase from the Fervidobacterium pennivorans DSM9078 showed extraordinary thermostability and distinctive ability in the efficient transformation of ginsenosides.
Kailu Zhou, Yangyang Zhang, Minghao Xu, Yikai Zhou, Ao Sun, Hao Zhou, Ye Han, Daqing Zhao, Shanshan Yu
{"title":"A GH1 β-glucosidase from the Fervidobacterium pennivorans DSM9078 showed extraordinary thermostability and distinctive ability in the efficient transformation of ginsenosides.","authors":"Kailu Zhou, Yangyang Zhang, Minghao Xu, Yikai Zhou, Ao Sun, Hao Zhou, Ye Han, Daqing Zhao, Shanshan Yu","doi":"10.1016/j.bioorg.2024.108049","DOIUrl":null,"url":null,"abstract":"<p><p>A novel GH1 β-glucosidase Fpglu1 from Fervidobacterium pennivorans DSM9078 was successfully cloned and expressed in Escherichia coli. This hyperthermophilic enzyme possesses unique features that make it valuable in biochemistry and pharmacology. It exhibited optimal activity at temperatures exceeding 100 °C, a trait rarely observed in other enzymes, and demonstrated extraordinary thermostability. It displayed multifunctional activity, with the highest activity observed for p-nitrophenyl-β-d-glucopyranoside (pNPGlu) at 92.47 U/mg. Furthermore, the distinctive capacity of Fpglu1 to transform ginsenosides (Rb1, Rb2, and Rc) into Compound-K (C-K) sets it apart from the other enzymes. It effectively cleaved the external β-(1-6) glycosidic linkage at the C-20 position of ginsenosides Rb1, Rb2, and Rc, followed by hydrolysis ofthe internal glycosidic bond connected to the C-3 position. The k<sub>cat</sub>/K<sub>m</sub> value of Fpglu1 for Rb1 was 453 ± 1.27 mM<sup>-1</sup>/s, significantly higher than those of Fpglu1 for other ginsenosides. The crystal structure of Fpglu1, determined at 1.85 Å resolution, provided a deeper understanding of its catalysis and substrate specificity. The evaluation of the binding conformation, hydrogen bond, and key amino acids of β-glucosidase Fpglu1 with different ginsenosides (Rb1, Rb2, and Rc) further elucidated the structural basis of its substrate-binding preference. In summary, Fpglu1, which had excellent thermostability and unique ginsenoside-transforming ability, was a highly promising catalyst for the industrial production of ginsenoside C-K. Additionally, structural studies have laid a theoretical foundation for further improving the catalytic properties of the enzyme through directed evolution in the future.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108049"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel GH1 β-glucosidase Fpglu1 from Fervidobacterium pennivorans DSM9078 was successfully cloned and expressed in Escherichia coli. This hyperthermophilic enzyme possesses unique features that make it valuable in biochemistry and pharmacology. It exhibited optimal activity at temperatures exceeding 100 °C, a trait rarely observed in other enzymes, and demonstrated extraordinary thermostability. It displayed multifunctional activity, with the highest activity observed for p-nitrophenyl-β-d-glucopyranoside (pNPGlu) at 92.47 U/mg. Furthermore, the distinctive capacity of Fpglu1 to transform ginsenosides (Rb1, Rb2, and Rc) into Compound-K (C-K) sets it apart from the other enzymes. It effectively cleaved the external β-(1-6) glycosidic linkage at the C-20 position of ginsenosides Rb1, Rb2, and Rc, followed by hydrolysis ofthe internal glycosidic bond connected to the C-3 position. The kcat/Km value of Fpglu1 for Rb1 was 453 ± 1.27 mM-1/s, significantly higher than those of Fpglu1 for other ginsenosides. The crystal structure of Fpglu1, determined at 1.85 Å resolution, provided a deeper understanding of its catalysis and substrate specificity. The evaluation of the binding conformation, hydrogen bond, and key amino acids of β-glucosidase Fpglu1 with different ginsenosides (Rb1, Rb2, and Rc) further elucidated the structural basis of its substrate-binding preference. In summary, Fpglu1, which had excellent thermostability and unique ginsenoside-transforming ability, was a highly promising catalyst for the industrial production of ginsenoside C-K. Additionally, structural studies have laid a theoretical foundation for further improving the catalytic properties of the enzyme through directed evolution in the future.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.