{"title":"Deep mutational scanning-guided design of a high-affinity helix-loop-helix peptide targeting G-CSF receptor.","authors":"Masataka Michigami, Yuka Kanata, Chang Iou Ven, Ayana Oshima, Asako Yamaguchi-Nomoto, Takayoshi Kinoshita, Takatsugu Hirokawa, Ikuo Fujii","doi":"10.1016/j.bmcl.2024.130071","DOIUrl":null,"url":null,"abstract":"<p><p>At present, mid-sized binding peptides have emerged as a new class of drug modalities. We have de novo designed a helix-loop-helix (HLH) peptide (MW: ∼4,500), constructed phage-displayed libraries, and screened the libraries against a variety of disease-related proteins to successfully obtain molecular-targeting HLH peptides. The next essential step in developing HLH peptides into therapeutics involves affinity engineering to optimize binding affinity and specificity. Here, we demonstrate deep mutational scanning to improve binding affinity over 1000-fold for an HLH peptide (P8-2KA; K<sub>D</sub> = 380 nM) targeting granulocyte colony-stimulation factor receptor (G-CSFR). Site-saturation mutagenesis on the two helices was performed to produce a phage-displayed library that was screened against G-CSFR. The DNA sequences of mutants from the unselected and selected phage libraries were analyzed with next-generation sequencing. The enrichment ratio of each mutant was calculated from the sequencing data to identify beneficial mutations for G-CSFR binding. Grafting of the five beneficial mutations on P8-2KA dramatically increased the binding affinity (K<sub>D</sub> = 16 nM), while cyclization of the HLH peptide with an intramolecular disulfide bond further increased binding affinity for G-CSFR (K<sub>D</sub> = 0.18 nM). The combined strategy of phage-displayed library selection and deep mutational scanning-guided design generated high-affinity HLH peptides, emphasizing the potential of molecular-targeting HLH peptides as a new drug modality that serves as an alternative to antibodies.</p>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":" ","pages":"130071"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bmcl.2024.130071","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
At present, mid-sized binding peptides have emerged as a new class of drug modalities. We have de novo designed a helix-loop-helix (HLH) peptide (MW: ∼4,500), constructed phage-displayed libraries, and screened the libraries against a variety of disease-related proteins to successfully obtain molecular-targeting HLH peptides. The next essential step in developing HLH peptides into therapeutics involves affinity engineering to optimize binding affinity and specificity. Here, we demonstrate deep mutational scanning to improve binding affinity over 1000-fold for an HLH peptide (P8-2KA; KD = 380 nM) targeting granulocyte colony-stimulation factor receptor (G-CSFR). Site-saturation mutagenesis on the two helices was performed to produce a phage-displayed library that was screened against G-CSFR. The DNA sequences of mutants from the unselected and selected phage libraries were analyzed with next-generation sequencing. The enrichment ratio of each mutant was calculated from the sequencing data to identify beneficial mutations for G-CSFR binding. Grafting of the five beneficial mutations on P8-2KA dramatically increased the binding affinity (KD = 16 nM), while cyclization of the HLH peptide with an intramolecular disulfide bond further increased binding affinity for G-CSFR (KD = 0.18 nM). The combined strategy of phage-displayed library selection and deep mutational scanning-guided design generated high-affinity HLH peptides, emphasizing the potential of molecular-targeting HLH peptides as a new drug modality that serves as an alternative to antibodies.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.