Role of Paramagnetic Aluminum Hole Centers in UV–C Persistent Luminescence of Ca2Al2SiO7:Pr3+

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Andris Antuzevics, Guna Krieke, Guna Doke, Pavels Rodionovs, Dace Nilova, Jekabs Cirulis, Andris Fedotovs, Uldis Rogulis
{"title":"Role of Paramagnetic Aluminum Hole Centers in UV–C Persistent Luminescence of Ca2Al2SiO7:Pr3+","authors":"Andris Antuzevics, Guna Krieke, Guna Doke, Pavels Rodionovs, Dace Nilova, Jekabs Cirulis, Andris Fedotovs, Uldis Rogulis","doi":"10.1021/acs.jpcc.4c06848","DOIUrl":null,"url":null,"abstract":"Materials with self-sustained emission in the ultraviolet (UV) spectral range present significant potential for practical applications. In this study, photochromic and persistent luminescence properties of Ca<sub>2</sub>Al<sub>2</sub>SiO<sub>7</sub>:Pr<sup>3+</sup> are characterized by diffuse reflectance, photoluminescence, and thermally stimulated luminescence (TSL) spectroscopy methods. The material exhibits efficient persistent luminescence in the 250–350 nm range, with power density reaching 10.6 mW/m<sup>2</sup> detected 10 s after 250 nm excitation and lasting for 3.7 h over the radiance threshold of 5 × 10<sup>–4</sup> mW/m<sup>2</sup>/sr. In addition, photochromism is observed after either UV or X-ray irradiation. Multiple excitation cycles lead to noticeable coloration and reduced luminescence intensity, which can be restored by annealing. Electron paramagnetic resonance (EPR) spectroscopy indicates a correlation between persistent luminescence, photochromic properties, and paramagnetic centers in the material. The paramagnetic centers are identified as self-trapped holes at the Al(2) sites of the lattice, based on the <i>g</i>-factor and hyperfine interaction values determined from EPR and electron–nuclear double resonance (ENDOR) spectra simulations. These results provide a fundamental understanding of the structure–property relationship in Ca<sub>2</sub>Al<sub>2</sub>SiO<sub>7</sub> and highlight practical considerations for developing UV–C persistent phosphor materials.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"22 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06848","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Materials with self-sustained emission in the ultraviolet (UV) spectral range present significant potential for practical applications. In this study, photochromic and persistent luminescence properties of Ca2Al2SiO7:Pr3+ are characterized by diffuse reflectance, photoluminescence, and thermally stimulated luminescence (TSL) spectroscopy methods. The material exhibits efficient persistent luminescence in the 250–350 nm range, with power density reaching 10.6 mW/m2 detected 10 s after 250 nm excitation and lasting for 3.7 h over the radiance threshold of 5 × 10–4 mW/m2/sr. In addition, photochromism is observed after either UV or X-ray irradiation. Multiple excitation cycles lead to noticeable coloration and reduced luminescence intensity, which can be restored by annealing. Electron paramagnetic resonance (EPR) spectroscopy indicates a correlation between persistent luminescence, photochromic properties, and paramagnetic centers in the material. The paramagnetic centers are identified as self-trapped holes at the Al(2) sites of the lattice, based on the g-factor and hyperfine interaction values determined from EPR and electron–nuclear double resonance (ENDOR) spectra simulations. These results provide a fundamental understanding of the structure–property relationship in Ca2Al2SiO7 and highlight practical considerations for developing UV–C persistent phosphor materials.

Abstract Image

在紫外线(UV)光谱范围内具有自持续发射的材料在实际应用中具有巨大的潜力。本研究采用漫反射、光致发光和热激发发光(TSL)光谱方法,对 Ca2Al2SiO7:Pr3+ 的光致变色和持续发光特性进行了表征。该材料在 250-350 纳米范围内表现出高效的持续发光特性,在 250 纳米激发 10 秒后检测到的功率密度达到 10.6 mW/m2,在 5 × 10-4 mW/m2/sr 的辐射阈值上可持续 3.7 小时。此外,在紫外线或 X 射线照射后还能观察到光致变色现象。多次激发会导致明显的褪色和发光强度降低,但退火后即可恢复。电子顺磁共振(EPR)光谱显示,持续发光、光致变色特性与材料中的顺磁中心之间存在关联。根据 EPR 和电子核双共振(ENDOR)光谱模拟确定的 g 因子和超细相互作用值,顺磁中心被确定为晶格 Al(2) 位点的自俘获空穴。这些结果提供了对 Ca2Al2SiO7 结构-性能关系的基本理解,并突出了开发紫外线-C 持久荧光粉材料的实际考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信