Jian Tao , Zhi-Jie Wen , Yu-Jun Zuo , Chen Wang , Jun Wang , Xing-Guo Yang
{"title":"A fully coupled rate- and temperature-dependent viscoplastic damage model for rock-like materials within the consistency framework","authors":"Jian Tao , Zhi-Jie Wen , Yu-Jun Zuo , Chen Wang , Jun Wang , Xing-Guo Yang","doi":"10.1016/j.ijplas.2024.104211","DOIUrl":null,"url":null,"abstract":"<div><div>Civil structures in the deep lithosphere are frequently exposed to thermal environments resulting from geothermal gradients and dynamic disturbances caused by blasting, rockbursts, and earthquakes during construction and operation. In this paper, a novel thermo-viscoplastic damage model is proposed within the consistency framework to capture the rate- and temperature-dependent behavior of rock-like materials. By rationally designing the free energy and dissipation potential functions, all the constitutive formulations relating the coupled thermo-elasto-viscoplastic-damage processes can be derived following the thermodynamic principle. The main innovation of our study lies primarily in deriving a fully coupled Lagrange multiplier satisfying the classical form of rate-independent plasticity while still retaining the rate-dependent characteristics, thus enabling a consistent solution for the viscoplastic strain, temperature, and damage variables. To better improve the usability of our model, a hierarchical procedure is formulated for identifying all model parameters based on conventional laboratory experiments. By reproducing a series of uniaxial/triaxial compression, SHPB tests, and large-scale impact tests across a broad range of pressures, strain rates, and temperatures, the proposed consistency thermo-viscoplastic damage model is proven able to characterize realistically the coupled dynamic and thermal responses, as well as corresponding failure patterns of rock-like materials. Our calculations show that greater thermal damage intensifies the strain rate sensitivity of dynamic rock strength. Moreover, we have newly discovered the competitive relations among different dissipation processes during inelastic material deformation, highlighting the potential application of our model in predicting the temperature evolution in geological fault zones associated with distributed rock fracturing and pulverization.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"184 ","pages":"Article 104211"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003383","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Civil structures in the deep lithosphere are frequently exposed to thermal environments resulting from geothermal gradients and dynamic disturbances caused by blasting, rockbursts, and earthquakes during construction and operation. In this paper, a novel thermo-viscoplastic damage model is proposed within the consistency framework to capture the rate- and temperature-dependent behavior of rock-like materials. By rationally designing the free energy and dissipation potential functions, all the constitutive formulations relating the coupled thermo-elasto-viscoplastic-damage processes can be derived following the thermodynamic principle. The main innovation of our study lies primarily in deriving a fully coupled Lagrange multiplier satisfying the classical form of rate-independent plasticity while still retaining the rate-dependent characteristics, thus enabling a consistent solution for the viscoplastic strain, temperature, and damage variables. To better improve the usability of our model, a hierarchical procedure is formulated for identifying all model parameters based on conventional laboratory experiments. By reproducing a series of uniaxial/triaxial compression, SHPB tests, and large-scale impact tests across a broad range of pressures, strain rates, and temperatures, the proposed consistency thermo-viscoplastic damage model is proven able to characterize realistically the coupled dynamic and thermal responses, as well as corresponding failure patterns of rock-like materials. Our calculations show that greater thermal damage intensifies the strain rate sensitivity of dynamic rock strength. Moreover, we have newly discovered the competitive relations among different dissipation processes during inelastic material deformation, highlighting the potential application of our model in predicting the temperature evolution in geological fault zones associated with distributed rock fracturing and pulverization.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.