NMFAD: Neighbor-Aware Mask-Filling Attributed Network Anomaly Detection

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Liang Xi;Runze Li;Menghan Li;Dehua Miao;Ruidong Wang;Zygmunt J. Haas
{"title":"NMFAD: Neighbor-Aware Mask-Filling Attributed Network Anomaly Detection","authors":"Liang Xi;Runze Li;Menghan Li;Dehua Miao;Ruidong Wang;Zygmunt J. Haas","doi":"10.1109/TIFS.2024.3516570","DOIUrl":null,"url":null,"abstract":"As a widely adopted protocol for anomaly detection in attributed networks, reconstruction error prioritizes comprehensive feature extraction to detect anomalies over interrogating the differential representation between normal and abnormal nodes. Intuitively, in attributed networks, normal nodes and their neighbors often exhibit similarities, whereas abnormal nodes demonstrate behaviors distinct from their neighbors. Hence, normal nodes can be accurately represented through their neighbors and effectively reconstructed. As opposed to normal nodes, abnormal nodes represented by their neighbors may be erroneously reconstructed as normal, resulting in increased reconstruction error. Leveraging from this observation, we propose a novel anomaly detection protocol called Neighbor-aware Mask-Filling Anomaly Detection (NMFAD) for attributed networks, aiming to maximize the variability between original and reconstructed features of abnormal nodes filled with information from their neighbors. Specifically, we utilize random-mask on nodes and integrate them into the backbone Graph Neural Networks (GNNs) to map nodes into a latent space. Subsequently, we fill the masked nodes with embeddings from their neighbors and smooth the abnormal nodes closer to the distribution of normal nodes. This optimization improves the likelihood of the decoder to reconstructing abnormal nodes as normal, thereby maximizing the reconstruction error of abnormal nodes. Experimental results demonstrate that, compared to the existing models, NMFAD exhibits superior performance.in attributed networks.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"364-374"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10795163/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

As a widely adopted protocol for anomaly detection in attributed networks, reconstruction error prioritizes comprehensive feature extraction to detect anomalies over interrogating the differential representation between normal and abnormal nodes. Intuitively, in attributed networks, normal nodes and their neighbors often exhibit similarities, whereas abnormal nodes demonstrate behaviors distinct from their neighbors. Hence, normal nodes can be accurately represented through their neighbors and effectively reconstructed. As opposed to normal nodes, abnormal nodes represented by their neighbors may be erroneously reconstructed as normal, resulting in increased reconstruction error. Leveraging from this observation, we propose a novel anomaly detection protocol called Neighbor-aware Mask-Filling Anomaly Detection (NMFAD) for attributed networks, aiming to maximize the variability between original and reconstructed features of abnormal nodes filled with information from their neighbors. Specifically, we utilize random-mask on nodes and integrate them into the backbone Graph Neural Networks (GNNs) to map nodes into a latent space. Subsequently, we fill the masked nodes with embeddings from their neighbors and smooth the abnormal nodes closer to the distribution of normal nodes. This optimization improves the likelihood of the decoder to reconstructing abnormal nodes as normal, thereby maximizing the reconstruction error of abnormal nodes. Experimental results demonstrate that, compared to the existing models, NMFAD exhibits superior performance.in attributed networks.
NMFAD:邻居感知掩码填充归因网络异常现象检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信