On the criticality of a disordered ferromagnets’ model at 3D lattices with low coordination number

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Svetislav Mijatović, Sanja Janićević, Djordje Spasojević
{"title":"On the criticality of a disordered ferromagnets’ model at 3D lattices with low coordination number","authors":"Svetislav Mijatović, Sanja Janićević, Djordje Spasojević","doi":"10.1016/j.chaos.2024.115855","DOIUrl":null,"url":null,"abstract":"We investigate the criticality of the athermal, nonequilibrium random field Ising model on three-dimensional lattices with coordination number <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>z</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>. Using state-of-the-art numerical simulations and finite-size scaling analysis, we address a longstanding theoretical question: the absence of disorder-induced critical behavior in systems with low coordination numbers. Our results provide compelling evidence that the model lacks nontrivial criticality, as indicated by the disorder dependence of the effective critical magnetic field, the average size of spanning avalanches, and the scaling collapses of avalanche parameters. Extensive simulations, including both regular lattices and systems with preset interfaces, reveal that coordination number and lattice dimensionality are the key factors governing critical behavior. These findings not only deepen our understanding of the distinctions between nonequilibrium and equilibrium critical phenomena in disordered systems but also offer insights relevant to the design of self-assembled materials with unique structural properties.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"30 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115855","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the criticality of the athermal, nonequilibrium random field Ising model on three-dimensional lattices with coordination number z=3. Using state-of-the-art numerical simulations and finite-size scaling analysis, we address a longstanding theoretical question: the absence of disorder-induced critical behavior in systems with low coordination numbers. Our results provide compelling evidence that the model lacks nontrivial criticality, as indicated by the disorder dependence of the effective critical magnetic field, the average size of spanning avalanches, and the scaling collapses of avalanche parameters. Extensive simulations, including both regular lattices and systems with preset interfaces, reveal that coordination number and lattice dimensionality are the key factors governing critical behavior. These findings not only deepen our understanding of the distinctions between nonequilibrium and equilibrium critical phenomena in disordered systems but also offer insights relevant to the design of self-assembled materials with unique structural properties.
低配位数三维晶格下无序铁磁体模型的临界性
我们研究了配位数为 z=3 的三维晶格上的非平衡热随机场伊辛模型的临界性。利用最先进的数值模拟和有限尺寸缩放分析,我们解决了一个长期存在的理论问题:低配位数系统中缺乏无序诱导的临界行为。我们的研究结果提供了令人信服的证据,表明该模型缺乏非对称临界性,具体表现在有效临界磁场的无序依赖性、跨越雪崩的平均尺寸以及雪崩参数的缩放塌缩。广泛的模拟(包括规则晶格和具有预设界面的系统)显示,配位数和晶格维度是制约临界行为的关键因素。这些发现不仅加深了我们对无序系统中非平衡态临界现象和平衡态临界现象之间区别的理解,还为设计具有独特结构特性的自组装材料提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信