Heather M. Kirkpatrick , Dustin Trail , T. Mark Harrison , Elizabeth A. Bell
{"title":"Investigating pressure effects of Ti and Zr partitioning into zircon, quartz, and rutile at crustal temperatures","authors":"Heather M. Kirkpatrick , Dustin Trail , T. Mark Harrison , Elizabeth A. Bell","doi":"10.1016/j.chemgeo.2024.122518","DOIUrl":null,"url":null,"abstract":"<div><div>The dependency of Ti partitioning between quartz and zircon on the activity of TiO<sub>2</sub> and Zr partitioning between zircon and rutile on the activity of ZrO<sub>2</sub> suggest that an intercalibration among the three minerals (i.e., concentration information from all three phases in the same experiment) could reduce propagated errors when using multiple systems simultaneously. Experiments were undertaken to assess pressure effects in Ti and Zr partitioning in the zircon-quartz-rutile system and intercalibration of the three phases at low concentrations (down to ∼20 ppm). Analysis of small crystals (down to ∼8 μm) was possible due to the high spatial resolution of the CAMECA <em>ims</em>1290 ion microprobe. Regressions for pressure-temperature-phase domains for experiments between 800 and 1000 °C and 10 and 15 kbar array about the initial calibration data providing confidence in their merit despite recent criticisms. Ti and Zr partitioning into quartz, rutile, and zircon can be quantified as:<span><span><span><math><mo>log</mo><mfenced><mrow><mi>Ti</mi><mo>−</mo><mi>in</mi><mo>−</mo><mi>quartz</mi></mrow></mfenced><mo>+</mo><mo>log</mo><mspace></mspace><msubsup><mi>a</mi><mrow><mi>Si</mi><msub><mi>O</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup><mo>=</mo><mn>6.71</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.11</mn></mrow></mfenced><mo>−</mo><mfrac><mrow><mn>383</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>10</mn></mrow></mfenced></mrow><mrow><mi>T</mi><mspace></mspace><mfenced><mi>K</mi></mfenced></mrow></mfrac><mo>−</mo><mn>0.122</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.07</mn></mrow></mfenced><mi>P</mi><mo>−</mo><mn>0.00197</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.00024</mn></mrow></mfenced><msup><mi>P</mi><mn>2</mn></msup></math></span></span></span><span><span><span><math><mo>log</mo><mfenced><mrow><mi>Zr</mi><mo>−</mo><mi>in</mi><mo>−</mo><mi>rutile</mi></mrow></mfenced><mo>+</mo><mo>log</mo><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup><mo>=</mo><mn>7.39</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.21</mn></mrow></mfenced><mo>−</mo><mfrac><mrow><mn>4262</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>220</mn></mrow></mfenced></mrow><mrow><mi>T</mi><mspace></mspace><mfenced><mi>K</mi></mfenced></mrow></mfrac><mo>−</mo><mn>0.021</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.0051</mn></mrow></mfenced><mi>P</mi></math></span></span></span></div><div>and<span><span><span><math><mo>log</mo><mfenced><mrow><mi>Ti</mi><mo>−</mo><mi>in</mi><mo>−</mo><mi>zircon</mi></mrow></mfenced><mo>+</mo><mi>log</mi><mspace></mspace><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup><mo>=</mo><mfrac><mrow><mo>−</mo><mn>4147</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>555</mn></mrow></mfenced></mrow><mrow><mi>T</mi><mfenced><mi>K</mi></mfenced></mrow></mfrac><mo>−</mo><mn>5.30</mn><mspace></mspace><mfenced><mrow><mo>±</mo><mn>0.41</mn></mrow></mfenced></math></span></span></span></div><div>where T is temperature (Kelvin), P is pressure (kbar), concentrations have units of ppm, and <span><math><msubsup><mi>a</mi><mrow><mi>Si</mi><msub><mi>O</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup></math></span> is the activity of SiO<sub>2</sub> referenced to α-quartz. Importantly, if α-quartz is present, <span><math><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup></math></span>is 1 and <span><math><mo>log</mo><mspace></mspace><mfenced><msubsup><mi>a</mi><mrow><mi>S</mi><msub><mi>iO</mi><mn>2</mn></msub></mrow><mrow><mi>α</mi><mo>−</mo><mi>quartz</mi></mrow></msubsup></mfenced></math></span> is zero.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"673 ","pages":"Article 122518"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254124005989","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dependency of Ti partitioning between quartz and zircon on the activity of TiO2 and Zr partitioning between zircon and rutile on the activity of ZrO2 suggest that an intercalibration among the three minerals (i.e., concentration information from all three phases in the same experiment) could reduce propagated errors when using multiple systems simultaneously. Experiments were undertaken to assess pressure effects in Ti and Zr partitioning in the zircon-quartz-rutile system and intercalibration of the three phases at low concentrations (down to ∼20 ppm). Analysis of small crystals (down to ∼8 μm) was possible due to the high spatial resolution of the CAMECA ims1290 ion microprobe. Regressions for pressure-temperature-phase domains for experiments between 800 and 1000 °C and 10 and 15 kbar array about the initial calibration data providing confidence in their merit despite recent criticisms. Ti and Zr partitioning into quartz, rutile, and zircon can be quantified as:
and
where T is temperature (Kelvin), P is pressure (kbar), concentrations have units of ppm, and is the activity of SiO2 referenced to α-quartz. Importantly, if α-quartz is present, is 1 and is zero.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.