Luis M. Abia, Óscar Angulo, Juan Carlos López-Marcos
{"title":"Numerical approximation and convergence to steady state solutions of a model for the dynamics of the sexual phase of Monogonont rotifera","authors":"Luis M. Abia, Óscar Angulo, Juan Carlos López-Marcos","doi":"10.1016/j.chaos.2024.115844","DOIUrl":null,"url":null,"abstract":"We consider the numerical approximation of the asymptotic behavior of an age-structured compartmental population model for the dynamics of the sexual phase of <ce:italic>Monogonont rotifera</ce:italic>. To cope with the difficulties of the infinite lifespan in long-time simulations, the main approach introduces a second order numerical discretization of a reformulation of the model problem in terms of a new computational size variable that evolves with age. The main contribution is to establish second order of convergence of the steady-state solutions of the discrete equations to the theoretical steady states of the continuous age-structured population model. Moreover, we report numerical evidence of a threshold for the male–female encounter rate parameter in the model after which the steady solution becomes unstable and a stable limit cycle appears in the dynamics. Finally, we confirm the effectiveness of the numerical technique we propose, when considering long-time integration of age-structured population models with infinite lifespan.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"119 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115844","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the numerical approximation of the asymptotic behavior of an age-structured compartmental population model for the dynamics of the sexual phase of Monogonont rotifera. To cope with the difficulties of the infinite lifespan in long-time simulations, the main approach introduces a second order numerical discretization of a reformulation of the model problem in terms of a new computational size variable that evolves with age. The main contribution is to establish second order of convergence of the steady-state solutions of the discrete equations to the theoretical steady states of the continuous age-structured population model. Moreover, we report numerical evidence of a threshold for the male–female encounter rate parameter in the model after which the steady solution becomes unstable and a stable limit cycle appears in the dynamics. Finally, we confirm the effectiveness of the numerical technique we propose, when considering long-time integration of age-structured population models with infinite lifespan.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.