Gauge theory meets cosmology

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Massimo Bianchi, Giuseppe Dibitetto and Jose Francisco Morales
{"title":"Gauge theory meets cosmology","authors":"Massimo Bianchi, Giuseppe Dibitetto and Jose Francisco Morales","doi":"10.1088/1475-7516/2024/12/040","DOIUrl":null,"url":null,"abstract":"We reconsider linear perturbations around general Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological backgrounds. Exploiting gauge freedom involving only time reparametrizations, we write down classical background solutions analytically, for an arbitrary number of fluid components. We then show that the time evolution of scalar and tensor adiabatic perturbations are governed by Schrödinger-like differential equations of generalized Heun type. After recovering known analytic results for a single-component fluid, we discuss more general situations with two and three different fluid components, with special attention to the combination of radiation, matter and vacuum energy, which is supposed to describe the ΛCDM model. The evolution of linear perturbations of a flat ΛCDM universe is described by a two-transient model, where the transitions from radiation to matter and matter to vacuum energy are governed by a Heun equation and a Hypergeometric equation, respectively. We discuss an analytic approach to the study of the general case, involving generalized Heun equations, that makes use of (quantum) Seiberg-Witten curves for 𝒩 = 2 supersymmetric gauge theories and has proven to be very effective in the analysis of Black-Hole, fuzzball and ECO perturbations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/040","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We reconsider linear perturbations around general Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological backgrounds. Exploiting gauge freedom involving only time reparametrizations, we write down classical background solutions analytically, for an arbitrary number of fluid components. We then show that the time evolution of scalar and tensor adiabatic perturbations are governed by Schrödinger-like differential equations of generalized Heun type. After recovering known analytic results for a single-component fluid, we discuss more general situations with two and three different fluid components, with special attention to the combination of radiation, matter and vacuum energy, which is supposed to describe the ΛCDM model. The evolution of linear perturbations of a flat ΛCDM universe is described by a two-transient model, where the transitions from radiation to matter and matter to vacuum energy are governed by a Heun equation and a Hypergeometric equation, respectively. We discuss an analytic approach to the study of the general case, involving generalized Heun equations, that makes use of (quantum) Seiberg-Witten curves for 𝒩 = 2 supersymmetric gauge theories and has proven to be very effective in the analysis of Black-Hole, fuzzball and ECO perturbations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信