A Self-Adaptive Feature Extraction Method for Aerial-View Geo-Localization

Jinliang Lin;Zhiming Luo;Dazhen Lin;Shaozi Li;Zhun Zhong
{"title":"A Self-Adaptive Feature Extraction Method for Aerial-View Geo-Localization","authors":"Jinliang Lin;Zhiming Luo;Dazhen Lin;Shaozi Li;Zhun Zhong","doi":"10.1109/TIP.2024.3513157","DOIUrl":null,"url":null,"abstract":"Cross-view geo-localization aims to match the same geographic location from different view images, e.g., drone-view images and geo-referenced satellite-view images. Due to UAV cameras’ different shooting angles and heights, the scale of the same captured target building in the drone-view images varies greatly. Meanwhile, there is a difference in size and floor area for different geographic locations in the real world, such as towers and stadiums, which also leads to scale variants of geographic targets in the images. However, existing methods mainly focus on extracting the fine-grained information of the geographic targets or the contextual information of the surrounding area, which overlook the robust feature for scale changes and the importance of feature alignment. In this study, we argue that the key underpinning of this task is to train a network to mine a discriminative representation against scale variants. To this end, we design an effective and novel end-to-end network called Self-Adaptive Feature Extraction Network (Safe-Net) to extract powerful scale-invariant features in a self-adaptive manner. Safe-Net includes a global representation-guided feature alignment module and a saliency-guided feature partition module. The former applies an affine transformation guided by the global feature for adaptive feature alignment. Without extra region annotations, the latter computes saliency distribution for different regions of the image and adopts the saliency information to guide a self-adaptive feature partition on the feature map to learn a visual representation against scale variants. Experiments on two prevailing large-scale aerial-view geo-localization benchmarks, i.e., University-1652 and SUES-200, show that the proposed method achieves state-of-the-art results. In addition, our proposed Safe-Net has a significant scale adaptive capability and can extract robust feature representations for those query images with small target buildings. The source code of this study is available at: \n<uri>https://github.com/AggMan96/Safe-Net</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"126-139"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10797651/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-view geo-localization aims to match the same geographic location from different view images, e.g., drone-view images and geo-referenced satellite-view images. Due to UAV cameras’ different shooting angles and heights, the scale of the same captured target building in the drone-view images varies greatly. Meanwhile, there is a difference in size and floor area for different geographic locations in the real world, such as towers and stadiums, which also leads to scale variants of geographic targets in the images. However, existing methods mainly focus on extracting the fine-grained information of the geographic targets or the contextual information of the surrounding area, which overlook the robust feature for scale changes and the importance of feature alignment. In this study, we argue that the key underpinning of this task is to train a network to mine a discriminative representation against scale variants. To this end, we design an effective and novel end-to-end network called Self-Adaptive Feature Extraction Network (Safe-Net) to extract powerful scale-invariant features in a self-adaptive manner. Safe-Net includes a global representation-guided feature alignment module and a saliency-guided feature partition module. The former applies an affine transformation guided by the global feature for adaptive feature alignment. Without extra region annotations, the latter computes saliency distribution for different regions of the image and adopts the saliency information to guide a self-adaptive feature partition on the feature map to learn a visual representation against scale variants. Experiments on two prevailing large-scale aerial-view geo-localization benchmarks, i.e., University-1652 and SUES-200, show that the proposed method achieves state-of-the-art results. In addition, our proposed Safe-Net has a significant scale adaptive capability and can extract robust feature representations for those query images with small target buildings. The source code of this study is available at: https://github.com/AggMan96/Safe-Net .
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信