Palladium-Catalyzed Three-Component Annulation Reaction Involving Multiple C─H Activation

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Shuai Yang, Xiang Zuo, Yanghui Zhang
{"title":"Palladium-Catalyzed Three-Component Annulation Reaction Involving Multiple C─H Activation","authors":"Shuai Yang, Xiang Zuo, Yanghui Zhang","doi":"10.1039/d4qo01857e","DOIUrl":null,"url":null,"abstract":"The Pd-catalyzed ring-forming reaction via multiple C─H activation provides an efficient strategy to access cyclic ring systems. The current reactions are primarily restricted to single and two-component reactions. Herein, we report a ring-forming reaction via palladium-catalyzed three-component multiple C─H activation. Using TsOMe as the methylating reagent, aryl iodides undergo maleimide-relayed C─H methylation. Subsequent cyclization via C(sp3)─H activation forms succinimide-fused tricyclic scaffolds. Depending on aryl iodides, the reaction involves dual or triple C─H activation to form two or three new C─C bonds. The reaction represents a new strategy for C─H methylation and offer a new synthetic method using simple and readily available substrates for succinimide-fused tricyclic scaffolds, which are crucial structural motifs found widely in organic compounds with diverse biological activities.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"21 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo01857e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Pd-catalyzed ring-forming reaction via multiple C─H activation provides an efficient strategy to access cyclic ring systems. The current reactions are primarily restricted to single and two-component reactions. Herein, we report a ring-forming reaction via palladium-catalyzed three-component multiple C─H activation. Using TsOMe as the methylating reagent, aryl iodides undergo maleimide-relayed C─H methylation. Subsequent cyclization via C(sp3)─H activation forms succinimide-fused tricyclic scaffolds. Depending on aryl iodides, the reaction involves dual or triple C─H activation to form two or three new C─C bonds. The reaction represents a new strategy for C─H methylation and offer a new synthetic method using simple and readily available substrates for succinimide-fused tricyclic scaffolds, which are crucial structural motifs found widely in organic compounds with diverse biological activities.
通过多重 C─H 活化的钯催化成环反应为获得环状系统提供了一种有效的策略。目前的反应主要局限于单组分和双组分反应。在此,我们报告了一种通过钯催化的三组分多 C─H 活化的成环反应。使用 TsOMe 作为甲基化试剂,芳基碘化物发生马来酰亚胺延迟 C─H 甲基化反应。随后通过 C(sp3)-H 活化环化形成琥珀酰亚胺融合的三环支架。根据芳基碘化物的不同,反应涉及双重或三重 C─H 活化,形成两个或三个新的 C─C 键。该反应代表了 C─H 甲基化的一种新策略,并为琥珀酰亚胺融合的三环支架提供了一种使用简单易得底物的新合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信