A general system for targeting MHC class II–antigen complex via a single adaptable loop

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Haotian Du, Jingjia Liu, Kevin M. Jude, Xinbo Yang, Ying Li, Braxton Bell, Hongli Yang, Audrey Kassardjian, Wyatt Blackson, Ali Mobedi, Udit Parekh, R. Andres Parra Sperberg, Jean-Philippe Julien, Elizabeth D. Mellins, K. Christopher Garcia, Po-Ssu Huang
{"title":"A general system for targeting MHC class II–antigen complex via a single adaptable loop","authors":"Haotian Du, Jingjia Liu, Kevin M. Jude, Xinbo Yang, Ying Li, Braxton Bell, Hongli Yang, Audrey Kassardjian, Wyatt Blackson, Ali Mobedi, Udit Parekh, R. Andres Parra Sperberg, Jean-Philippe Julien, Elizabeth D. Mellins, K. Christopher Garcia, Po-Ssu Huang","doi":"10.1038/s41587-024-02466-y","DOIUrl":null,"url":null,"abstract":"<p>Major histocompatibility complex class II (MHCII) bound to a peptide antigen mediates interactions between CD4<sup>+</sup> T cells and antigen-presenting cells. Targeting peptide–MHCII with T cell antigen receptors (TCRs) and TCR-like antibodies has shown promise for autoimmune diseases and microbiome tolerance. To develop a general targeting approach, we introduce targeted recognition of antigen–MHC complex reporter for MHCII (TRACeR-II) for the rapid development of peptide-specific MHCII binders. TRACeR-II binders have a small helical bundle scaffold and use a single loop to recognize peptide–MHCII, which offers versatility and enables structural modeling of the interactions to target MHCII antigens. We demonstrate rapid generation of TRACeR-II binders to multiple molecules with affinities in the low-nanomolar to low-micromolar range, comparable to best-in-class TCRs and antibodies. Through computational protein design, we created specific binding sequences in silico from only the sequence of a severe acute respiratory syndrome coronavirus 2 peptide. TRACeR-II provides a straightforward approach to target antigen–MHCII without relying on combinatorial selection on complementarity-determining region loops.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"352 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02466-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Major histocompatibility complex class II (MHCII) bound to a peptide antigen mediates interactions between CD4+ T cells and antigen-presenting cells. Targeting peptide–MHCII with T cell antigen receptors (TCRs) and TCR-like antibodies has shown promise for autoimmune diseases and microbiome tolerance. To develop a general targeting approach, we introduce targeted recognition of antigen–MHC complex reporter for MHCII (TRACeR-II) for the rapid development of peptide-specific MHCII binders. TRACeR-II binders have a small helical bundle scaffold and use a single loop to recognize peptide–MHCII, which offers versatility and enables structural modeling of the interactions to target MHCII antigens. We demonstrate rapid generation of TRACeR-II binders to multiple molecules with affinities in the low-nanomolar to low-micromolar range, comparable to best-in-class TCRs and antibodies. Through computational protein design, we created specific binding sequences in silico from only the sequence of a severe acute respiratory syndrome coronavirus 2 peptide. TRACeR-II provides a straightforward approach to target antigen–MHCII without relying on combinatorial selection on complementarity-determining region loops.

Abstract Image

一种通过单一适应性环靶向MHC ii类抗原复合物的通用系统
与肽抗原结合的主要组织相容性复合体II类(MHCII)介导CD4+ T细胞和抗原呈递细胞之间的相互作用。用T细胞抗原受体(tcr)和tcr样抗体靶向肽- mhcii已显示出治疗自身免疫性疾病和微生物组耐受性的希望。为了开发一种通用的靶向方法,我们引入了MHCII抗原- mhc复合体报告基因(TRACeR-II)的靶向识别,以快速开发肽特异性MHCII结合物。TRACeR-II结合剂具有小的螺旋束支架,并使用单环识别肽- MHCII,这提供了多功能性,并能够对靶向MHCII抗原的相互作用进行结构建模。我们展示了TRACeR-II结合物的快速生成,具有低纳摩尔到低微摩尔范围内的亲和力,可与同类最佳的tcr和抗体相媲美。通过计算蛋白设计,我们仅从严重急性呼吸综合征冠状病毒2肽的序列中创建了特异性结合序列。TRACeR-II提供了一种直接的靶向抗原mhcii的方法,而不依赖于互补决定区域环的组合选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信