Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From 18F-FDG PET/CT Based on Interpretable Machine Learning.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Furui Duan, Minghui Zhang, Chunyan Yang, Xuewei Wang, Dalong Wang
{"title":"Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From <sup>18</sup>F-FDG PET/CT Based on Interpretable Machine Learning.","authors":"Furui Duan, Minghui Zhang, Chunyan Yang, Xuewei Wang, Dalong Wang","doi":"10.1016/j.acra.2024.11.037","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC). The model's interpretability was enhanced using Shapley additive explanations (SHAP).</p><p><strong>Methods: </strong>A total of 248 NSCLC patients who underwent preoperative PET/CT scans were included and divided into training, test, and external validation sets. Radiomics features were extracted from segmented tumor regions on PET/CT images, and deep learning features were generated using the ResNet50 architecture. Feature selection was performed using minimum-redundancy maximum-relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) algorithm. Four models-clinical, radiomics, deep learning radiomics (DL_radiomics), and combined model-were constructed using the XGBoost algorithm and evaluated based on diagnostic performance metrics, including area under the receiver operating characteristic curve (AUC), accuracy, F1 score, sensitivity, and specificity. Shapley Additive exPlanations (SHAP) was used for model interpretability.</p><p><strong>Results: </strong>The combined model achieved the highest AUC in the test set (AUC=0.853), outperforming the clinical (AUC=0.758), radiomics (AUC=0.831), and DL_radiomics (AUC=0.834) models. Decision curve analysis (DCA) demonstrated that the combined model offered greater clinical net benefits. SHAP was used for global interpretation, and the summary plot indicated that the features ct_original_glrlm_LongRunHighGrayLevelEmphasis, and pet_gradient_glcm_lmc1 were the most important for the model's predictions.</p><p><strong>Conclusion: </strong>The combined model, combining clinical, radiomics, and deep learning features from PET/CT, significantly improved the accuracy of LNM prediction in NSCLC patients. SHAP-based interpretability provided valuable insights into the model's decision-making process, enhancing its potential clinical application for preoperative decision-making in NSCLC.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC). The model's interpretability was enhanced using Shapley additive explanations (SHAP).

Methods: A total of 248 NSCLC patients who underwent preoperative PET/CT scans were included and divided into training, test, and external validation sets. Radiomics features were extracted from segmented tumor regions on PET/CT images, and deep learning features were generated using the ResNet50 architecture. Feature selection was performed using minimum-redundancy maximum-relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) algorithm. Four models-clinical, radiomics, deep learning radiomics (DL_radiomics), and combined model-were constructed using the XGBoost algorithm and evaluated based on diagnostic performance metrics, including area under the receiver operating characteristic curve (AUC), accuracy, F1 score, sensitivity, and specificity. Shapley Additive exPlanations (SHAP) was used for model interpretability.

Results: The combined model achieved the highest AUC in the test set (AUC=0.853), outperforming the clinical (AUC=0.758), radiomics (AUC=0.831), and DL_radiomics (AUC=0.834) models. Decision curve analysis (DCA) demonstrated that the combined model offered greater clinical net benefits. SHAP was used for global interpretation, and the summary plot indicated that the features ct_original_glrlm_LongRunHighGrayLevelEmphasis, and pet_gradient_glcm_lmc1 were the most important for the model's predictions.

Conclusion: The combined model, combining clinical, radiomics, and deep learning features from PET/CT, significantly improved the accuracy of LNM prediction in NSCLC patients. SHAP-based interpretability provided valuable insights into the model's decision-making process, enhancing its potential clinical application for preoperative decision-making in NSCLC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信