Autophagy modulates male fertility in arabidopsis.

Zhen Lu, He Yan, Hao Wang
{"title":"Autophagy modulates male fertility in arabidopsis.","authors":"Zhen Lu, He Yan, Hao Wang","doi":"10.1080/15548627.2024.2441305","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy/autophagy is a highly conserved catabolic process in eukaryotes and plays pivotal roles in regulating male fertility and sexual reproduction. In metazoans, mutations in core ATG (autophagy related) proteins frequently result in severe defects in sperm formation and maturation, resulting in male sterility. In contrast, autophagy has traditionally been considered dispensable for reproduction in <i>Arabidopsis thaliana</i>, as most <i>atg</i> mutants can complete fertilization and produce viable progeny without apparent reproductive defects. We recently systematically re-assessed the role of autophagy in Arabidopsis male gametophyte development and fertility using <i>atg5</i> and <i>atg7</i> mutants, and the double mutant. These mutants exhibited partial defects in pollen germination, pollen tube growth and seed production compared to the wild type (WT). Furthermore, our findings reveal that autophagy is essential for modulating actin dynamic organization during sperm cell formation within pollen grains and for supporting pollen tube elongation. This is achieved through the selective degradation of actin depolymerizing factors ADF7 and PFN2/Profilin2. NBR1 is identified as a key receptor mediating this process. This study provides valuable insights into the evolutionary conservation and functional divergence of autophagy in modulating male fertility, highlighting distinctions between plant and mammalian systems.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2441305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Macroautophagy/autophagy is a highly conserved catabolic process in eukaryotes and plays pivotal roles in regulating male fertility and sexual reproduction. In metazoans, mutations in core ATG (autophagy related) proteins frequently result in severe defects in sperm formation and maturation, resulting in male sterility. In contrast, autophagy has traditionally been considered dispensable for reproduction in Arabidopsis thaliana, as most atg mutants can complete fertilization and produce viable progeny without apparent reproductive defects. We recently systematically re-assessed the role of autophagy in Arabidopsis male gametophyte development and fertility using atg5 and atg7 mutants, and the double mutant. These mutants exhibited partial defects in pollen germination, pollen tube growth and seed production compared to the wild type (WT). Furthermore, our findings reveal that autophagy is essential for modulating actin dynamic organization during sperm cell formation within pollen grains and for supporting pollen tube elongation. This is achieved through the selective degradation of actin depolymerizing factors ADF7 and PFN2/Profilin2. NBR1 is identified as a key receptor mediating this process. This study provides valuable insights into the evolutionary conservation and functional divergence of autophagy in modulating male fertility, highlighting distinctions between plant and mammalian systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信