Expression of c-fos in cortical neuron cultures under dynamic magnetic field is not suppressed by calcium channel blockers.

IF 1.9 Q3 PHARMACOLOGY & PHARMACY
Takashi Shibata, Daisuke Ihara, Yuji Kirihara, Tohru Yagi, Akiko Tabuchi, Satoshi Kuroda
{"title":"Expression of c-fos in cortical neuron cultures under dynamic magnetic field is not suppressed by calcium channel blockers.","authors":"Takashi Shibata, Daisuke Ihara, Yuji Kirihara, Tohru Yagi, Akiko Tabuchi, Satoshi Kuroda","doi":"10.5582/ddt.2024.01077","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, we developed a dynamic magnetic field (DMF) device using neodymium magnets that induced c-fos expression in cortical neurons, while activity-regulated cytoskeleton-associated protein (Arc), and brain-derived neurotrophic factor (BDNF) remained unaffected. The precise signal transduction pathway for c-fos induction under DMF was unclear. This study aimed to investigate the mechanism of immediate early gene (IEG) induction using calcium channel blockers (CCBs). Six experiments were conducted with cortical neurons, employing an NMDA receptor antagonist and an L-type voltage-dependent calcium channel blocker as CCBs. Neuronal cultures were exposed to DMF, CCBs, or both, and IEG expression (Arc, c-fos, BDNF) was measured through polymerase chain reaction. Results showed a tendency for increased c-fos expression with DMF exposure, which was unaffected by CCBs. In contrast, Arc and BDNF were not induced under DMF exposure but were significantly inhibited by CCBs. These findings suggest that c-fos induction under DMF involves a distinct pathway, potentially relevant to stress resistance and drug discovery.</p>","PeriodicalId":47494,"journal":{"name":"Drug Discoveries and Therapeutics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discoveries and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/ddt.2024.01077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, we developed a dynamic magnetic field (DMF) device using neodymium magnets that induced c-fos expression in cortical neurons, while activity-regulated cytoskeleton-associated protein (Arc), and brain-derived neurotrophic factor (BDNF) remained unaffected. The precise signal transduction pathway for c-fos induction under DMF was unclear. This study aimed to investigate the mechanism of immediate early gene (IEG) induction using calcium channel blockers (CCBs). Six experiments were conducted with cortical neurons, employing an NMDA receptor antagonist and an L-type voltage-dependent calcium channel blocker as CCBs. Neuronal cultures were exposed to DMF, CCBs, or both, and IEG expression (Arc, c-fos, BDNF) was measured through polymerase chain reaction. Results showed a tendency for increased c-fos expression with DMF exposure, which was unaffected by CCBs. In contrast, Arc and BDNF were not induced under DMF exposure but were significantly inhibited by CCBs. These findings suggest that c-fos induction under DMF involves a distinct pathway, potentially relevant to stress resistance and drug discovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discoveries and Therapeutics
Drug Discoveries and Therapeutics PHARMACOLOGY & PHARMACY-
CiteScore
3.20
自引率
3.20%
发文量
51
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信