GIN-TONIC: non-hierarchical full-text indexing for graph genomes.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-11 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae159
Ünsal Öztürk, Marco Mattavelli, Paolo Ribeca
{"title":"GIN-TONIC: non-hierarchical full-text indexing for graph genomes.","authors":"Ünsal Öztürk, Marco Mattavelli, Paolo Ribeca","doi":"10.1093/nargab/lqae159","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a new data structure, GIN-TONIC (<b>G</b>raph <b>IN</b>dexing <b>T</b>hrough <b>O</b>ptimal <b>N</b>ear <b>I</b>nterval <b>C</b>ompaction), designed to index arbitrary string-labelled directed graphs representing, for instance, pangenomes or transcriptomes. GIN-TONIC provides several capabilities not offered by other graph-indexing methods based on the FM-Index. It is non-hierarchical, handling a graph as a monolithic object; it indexes at nucleotide resolution all possible walks in the graph without the need to explicitly store them; it supports exact substring queries in polynomial time and space for all possible walk roots in the graph, even if there are exponentially many walks corresponding to such roots. Specific ad-hoc optimizations, such as precomputed caches, allow GIN-TONIC to achieve excellent performance for input graphs of various topologies and sizes. Robust scalability capabilities and a querying performance close to that of a linear FM-Index are demonstrated for two real-world applications on the scale of human pangenomes and transcriptomes. Source code and associated benchmarks are available on GitHub.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae159"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new data structure, GIN-TONIC (Graph INdexing Through Optimal Near Interval Compaction), designed to index arbitrary string-labelled directed graphs representing, for instance, pangenomes or transcriptomes. GIN-TONIC provides several capabilities not offered by other graph-indexing methods based on the FM-Index. It is non-hierarchical, handling a graph as a monolithic object; it indexes at nucleotide resolution all possible walks in the graph without the need to explicitly store them; it supports exact substring queries in polynomial time and space for all possible walk roots in the graph, even if there are exponentially many walks corresponding to such roots. Specific ad-hoc optimizations, such as precomputed caches, allow GIN-TONIC to achieve excellent performance for input graphs of various topologies and sizes. Robust scalability capabilities and a querying performance close to that of a linear FM-Index are demonstrated for two real-world applications on the scale of human pangenomes and transcriptomes. Source code and associated benchmarks are available on GitHub.

图形基因组的非分层全文索引。
本文提出了一种新的数据结构GIN-TONIC(通过最优近间隔压缩的图索引),用于索引任意字符串标记的有向图,例如泛基因组或转录组。GIN-TONIC提供了一些其他基于FM-Index的图形索引方法所不提供的功能。它是非分层的,将图作为一个整体对象处理;它以核苷酸分辨率索引图中所有可能的行走,而不需要显式地存储它们;它支持在多项式时间和空间内对图中所有可能的行走根进行精确的子字符串查询,即使与这些根对应的行走次数呈指数级增长。特定的特别优化,例如预先计算的缓存,允许GIN-TONIC在各种拓扑和大小的输入图上实现出色的性能。在人类泛基因组和转录组的两个实际应用中,展示了强大的可扩展性能力和接近线性FM-Index的查询性能。源代码和相关的基准测试可以在GitHub上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信