{"title":"GIN-TONIC: non-hierarchical full-text indexing for graph genomes.","authors":"Ünsal Öztürk, Marco Mattavelli, Paolo Ribeca","doi":"10.1093/nargab/lqae159","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a new data structure, GIN-TONIC (<b>G</b>raph <b>IN</b>dexing <b>T</b>hrough <b>O</b>ptimal <b>N</b>ear <b>I</b>nterval <b>C</b>ompaction), designed to index arbitrary string-labelled directed graphs representing, for instance, pangenomes or transcriptomes. GIN-TONIC provides several capabilities not offered by other graph-indexing methods based on the FM-Index. It is non-hierarchical, handling a graph as a monolithic object; it indexes at nucleotide resolution all possible walks in the graph without the need to explicitly store them; it supports exact substring queries in polynomial time and space for all possible walk roots in the graph, even if there are exponentially many walks corresponding to such roots. Specific ad-hoc optimizations, such as precomputed caches, allow GIN-TONIC to achieve excellent performance for input graphs of various topologies and sizes. Robust scalability capabilities and a querying performance close to that of a linear FM-Index are demonstrated for two real-world applications on the scale of human pangenomes and transcriptomes. Source code and associated benchmarks are available on GitHub.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae159"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new data structure, GIN-TONIC (Graph INdexing Through Optimal Near Interval Compaction), designed to index arbitrary string-labelled directed graphs representing, for instance, pangenomes or transcriptomes. GIN-TONIC provides several capabilities not offered by other graph-indexing methods based on the FM-Index. It is non-hierarchical, handling a graph as a monolithic object; it indexes at nucleotide resolution all possible walks in the graph without the need to explicitly store them; it supports exact substring queries in polynomial time and space for all possible walk roots in the graph, even if there are exponentially many walks corresponding to such roots. Specific ad-hoc optimizations, such as precomputed caches, allow GIN-TONIC to achieve excellent performance for input graphs of various topologies and sizes. Robust scalability capabilities and a querying performance close to that of a linear FM-Index are demonstrated for two real-world applications on the scale of human pangenomes and transcriptomes. Source code and associated benchmarks are available on GitHub.