In silico and in vivo analyses of a novel variant in MYO6 identified in a family with postlingual non-syndromic hearing loss from Argentina.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-11 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae162
Paula I Buonfiglio, Carlos D Bruque, Lucía Salatino, Vanesa Lotersztein, Mariela Pace, Sofia Grinberg, Ana B Elgoyhen, Paola V Plazas, Viviana Dalamón
{"title":"<i>In silico</i> and <i>in vivo</i> analyses of a novel variant in <i>MYO</i>6 identified in a family with postlingual non-syndromic hearing loss from Argentina.","authors":"Paula I Buonfiglio, Carlos D Bruque, Lucía Salatino, Vanesa Lotersztein, Mariela Pace, Sofia Grinberg, Ana B Elgoyhen, Paola V Plazas, Viviana Dalamón","doi":"10.1093/nargab/lqae162","DOIUrl":null,"url":null,"abstract":"<p><p>Hereditary hearing loss stands as the most prevalent sensory disorder, with over 124 non-syndromic genes and approximately 400 syndromic forms of deafness identified in humans. The clinical presentation of these conditions spans a spectrum, ranging from mild to profound hearing loss. The aim of this study was to identify the genetic cause of hearing loss in a family and functionally validate a novel variant identified in the <i>MYO</i>6 gene. After Whole Exome Sequencing analysis, the variant c.2775G>C p.Arg925Ser in <i>MYO</i>6 was detected in a family with postlingual non-syndromic hearing loss. By protein modeling a change in the electrostatic charge of the single alpha helix domain surface was revealed. Through a knockdown phenotype rescue assay in zebrafish, the detrimental effects of the identified variant on the auditory system was determined. These findings underscore the significance of a comprehensive approach, integrating both <i>in silico</i> and <i>in vivo</i> strategies, to ascertain the pathogenicity of this candidate variant. Such an approach has demonstrated its effectiveness in achieving an accurate genetic diagnosis and in promoting a more profound comprehension of the mechanisms that underlie the pathophysiology of hearing.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae162"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hereditary hearing loss stands as the most prevalent sensory disorder, with over 124 non-syndromic genes and approximately 400 syndromic forms of deafness identified in humans. The clinical presentation of these conditions spans a spectrum, ranging from mild to profound hearing loss. The aim of this study was to identify the genetic cause of hearing loss in a family and functionally validate a novel variant identified in the MYO6 gene. After Whole Exome Sequencing analysis, the variant c.2775G>C p.Arg925Ser in MYO6 was detected in a family with postlingual non-syndromic hearing loss. By protein modeling a change in the electrostatic charge of the single alpha helix domain surface was revealed. Through a knockdown phenotype rescue assay in zebrafish, the detrimental effects of the identified variant on the auditory system was determined. These findings underscore the significance of a comprehensive approach, integrating both in silico and in vivo strategies, to ascertain the pathogenicity of this candidate variant. Such an approach has demonstrated its effectiveness in achieving an accurate genetic diagnosis and in promoting a more profound comprehension of the mechanisms that underlie the pathophysiology of hearing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信