Low Carbohydrate Availability Promotes a Distinct Circulating microRNA Profile 24 Hours Following Aerobic Exercise.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis
{"title":"Low Carbohydrate Availability Promotes a Distinct Circulating microRNA Profile 24 Hours Following Aerobic Exercise.","authors":"Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis","doi":"10.1152/physiolgenomics.00107.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. <b>Purpose:</b> This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. <b>Methods:</b> Nine males (22±4yrs, 1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m<sup>2</sup>, mean±SD) completed this randomized, crossover study consisting of two glycogen depletion trials, followed by 24 hours of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA were extracted from serum 24 hours following glycogen depletion exercise. Data were log transformed and analyzed as fold change relative to AD. Bioinformatics were conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. <b>Results:</b> Of the 84 miRNA assessed, miR-335-5p (-0.49±0.60; P=0.04) and miR-375-3p (-1.57±1.25; P=0.01) were significantly lower, and miR-214-3p (1.76±1.85; P=0.02) was significantly higher in AD versus LOW. <i>In vitro</i> experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. <b>Conclusion:</b> Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 hours into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00107.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. Purpose: This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. Methods: Nine males (22±4yrs, 1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m2, mean±SD) completed this randomized, crossover study consisting of two glycogen depletion trials, followed by 24 hours of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA were extracted from serum 24 hours following glycogen depletion exercise. Data were log transformed and analyzed as fold change relative to AD. Bioinformatics were conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. Results: Of the 84 miRNA assessed, miR-335-5p (-0.49±0.60; P=0.04) and miR-375-3p (-1.57±1.25; P=0.01) were significantly lower, and miR-214-3p (1.76±1.85; P=0.02) was significantly higher in AD versus LOW. In vitro experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. Conclusion: Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 hours into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信