Low Carbohydrate Availability Promotes a Distinct Circulating microRNA Profile 24 Hours Following Aerobic Exercise.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis
{"title":"Low Carbohydrate Availability Promotes a Distinct Circulating microRNA Profile 24 Hours Following Aerobic Exercise.","authors":"Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis","doi":"10.1152/physiolgenomics.00107.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. <b>Purpose:</b> This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. <b>Methods:</b> Nine males (22±4yrs, 1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m<sup>2</sup>, mean±SD) completed this randomized, crossover study consisting of two glycogen depletion trials, followed by 24 hours of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA were extracted from serum 24 hours following glycogen depletion exercise. Data were log transformed and analyzed as fold change relative to AD. Bioinformatics were conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. <b>Results:</b> Of the 84 miRNA assessed, miR-335-5p (-0.49±0.60; P=0.04) and miR-375-3p (-1.57±1.25; P=0.01) were significantly lower, and miR-214-3p (1.76±1.85; P=0.02) was significantly higher in AD versus LOW. <i>In vitro</i> experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. <b>Conclusion:</b> Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 hours into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00107.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. Purpose: This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. Methods: Nine males (22±4yrs, 1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m2, mean±SD) completed this randomized, crossover study consisting of two glycogen depletion trials, followed by 24 hours of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA were extracted from serum 24 hours following glycogen depletion exercise. Data were log transformed and analyzed as fold change relative to AD. Bioinformatics were conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. Results: Of the 84 miRNA assessed, miR-335-5p (-0.49±0.60; P=0.04) and miR-375-3p (-1.57±1.25; P=0.01) were significantly lower, and miR-214-3p (1.76±1.85; P=0.02) was significantly higher in AD versus LOW. In vitro experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. Conclusion: Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 hours into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.

低碳水化合物可在有氧运动后24小时促进不同的循环microRNA谱。
有氧运动恢复过程中的低碳水化合物可用性改变了骨骼肌microRNA (miRNA)谱,这可能是调节运动恢复的机制。然而,其对循环miRNA (c-miRNA)谱的影响尚不清楚。目的:本研究旨在确定低碳水化合物和充足碳水化合物对有氧运动后恢复过程中c-miRNA谱的影响。方法:9名男性(22±4岁,1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m2, mean±SD)完成了这项随机交叉研究,包括两个糖原消耗试验,随后24小时等热量再喂养以诱导低(low;1.5 g/kg碳水化合物,3.0 g/kg脂肪)或足够量(AD;6.0 g/kg碳水化合物,1.0 g/kg脂肪)碳水化合物利用率。在糖原消耗运动后24小时从血清中提取总c-miRNA。对数据进行对数变换,并以相对于AD的折线变化进行分析。对重要的c-miRNA及其相关通路(miRTarBase/KEGG)进行生物信息学分析。随后将miR-375-3p模拟物或抑制剂转染到C2C12细胞中,在基因和蛋白质水平上评估代谢、炎症和分解代谢途径。结果:在评估的84个miRNA中,miR-335-5p(-0.49±0.60;P=0.04), miR-375-3p(-1.57±1.25;P=0.01), miR-214-3p(1.76±1.85;P=0.02), AD组明显高于LOW组。体外实验表明,miR-375-3p在基因和蛋白水平调控分解代谢途径。结论:低碳水化合物可改变c-miRNA谱,特别是miR-375-3p,其目标是有氧运动后恢复24小时内的蛋白质静止和代谢。这些发现确定了独特的c-miRNA靶点,作为低碳水化合物可获得性对运动恢复的机制影响的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信