A comprehensive dual energy method for CBCT metal artifact reduction.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Weiwei Ge, Zihao Liu, Hehe Cui, Xiaogang Yuan, Yidong Yang
{"title":"A comprehensive dual energy method for CBCT metal artifact reduction.","authors":"Weiwei Ge, Zihao Liu, Hehe Cui, Xiaogang Yuan, Yidong Yang","doi":"10.1088/1361-6560/ad9db1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>A major limitation in CBCT application is the presence of metal artifacts when scanning metal-embedded objects or high attenuation materials. This study aims to develop a dual-energy based method for effective metal artifact reduction.</p><p><strong>Approach: </strong>The proposed method comprised three steps. Initially, the virtual monoenergetic (VM) projections were generated by combining high- and low-energy projections to mitigate metal artifacts caused by the beam hardening effect. Subsequently, the normalized metal artifact reduction (NMAR) projections were created using the VM projections through the NMAR method. Then, the NMAR CBCT was produced by reintegrating metal into the CBCT reconstructed from NMAR projections. Finally, the iterative reconstruction was employed to obtain the final CBCT, utilizing VM projections and the NMAR CBCT as the initial input. Validation of the proposed method was achieved through Monte Carlo (MC) simulations on digital dental and abdominal phantoms, and CBCT scanning on CIRS Model 062M head and body phantoms. The Structural Similarity Index Measurement (SSIM) and the Root Mean Square Error (RMSE) were employed for image quality evaluation.</p><p><strong>Main results: </strong>Both the MC simulation and phantom scanning demonstrated that the proposed method was superior to the frequency split metal artifact reduction (FSMAR) method in mitigating artifacts and preserving anatomic details around metal. Averaged over four phantoms, the SSIM was enhanced from 98.48% with FSMAR to 99.86% with our proposed method, and the RMSE was reduced from 93.62 HU to 71.05 HU. Furthermore, the proposed method could be implemented with less than two minutes after GPU acceleration.</p><p><strong>Significance: </strong>The proposed dual-energy based metal artifact correction method effectively corrects metal artifacts and preserves tissue details surrounding the metal region by leveraging the strengths of VM, projection interpolation and iterative reconstruction techniques. It has strong potential of clinical implementation due to the superior performance in image quality and process efficiency.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9db1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: A major limitation in CBCT application is the presence of metal artifacts when scanning metal-embedded objects or high attenuation materials. This study aims to develop a dual-energy based method for effective metal artifact reduction.

Approach: The proposed method comprised three steps. Initially, the virtual monoenergetic (VM) projections were generated by combining high- and low-energy projections to mitigate metal artifacts caused by the beam hardening effect. Subsequently, the normalized metal artifact reduction (NMAR) projections were created using the VM projections through the NMAR method. Then, the NMAR CBCT was produced by reintegrating metal into the CBCT reconstructed from NMAR projections. Finally, the iterative reconstruction was employed to obtain the final CBCT, utilizing VM projections and the NMAR CBCT as the initial input. Validation of the proposed method was achieved through Monte Carlo (MC) simulations on digital dental and abdominal phantoms, and CBCT scanning on CIRS Model 062M head and body phantoms. The Structural Similarity Index Measurement (SSIM) and the Root Mean Square Error (RMSE) were employed for image quality evaluation.

Main results: Both the MC simulation and phantom scanning demonstrated that the proposed method was superior to the frequency split metal artifact reduction (FSMAR) method in mitigating artifacts and preserving anatomic details around metal. Averaged over four phantoms, the SSIM was enhanced from 98.48% with FSMAR to 99.86% with our proposed method, and the RMSE was reduced from 93.62 HU to 71.05 HU. Furthermore, the proposed method could be implemented with less than two minutes after GPU acceleration.

Significance: The proposed dual-energy based metal artifact correction method effectively corrects metal artifacts and preserves tissue details surrounding the metal region by leveraging the strengths of VM, projection interpolation and iterative reconstruction techniques. It has strong potential of clinical implementation due to the superior performance in image quality and process efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信