Machine Learning-based Prognostic Subgrouping of Glioblastoma: A Multi-center Study.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY
Hamed Akbari, Spyridon Bakas, Chiharu Sako, Anahita Fathi Kazerooni, Javier Villanueva-Meyer, Jose A Garcia, Elizabeth Mamourian, Fang Liu, Quy Cao, Russell T Shinohara, Ujjwal Baid, Alexander Getka, Sarthak Pati, Ashish Singh, Evan Calabrese, Susan Chang, Jeffrey Rudie, Aristeidis Sotiras, Pamela LaMontagne, Daniel S Marcus, Mikhail Milchenko, Arash Nazeri, Carmen Balana, Jaume Capellades, Josep Puig, Chaitra Badve, Jill S Barnholtz-Sloan, Andrew E Sloan, Vachan Vadmal, Kristin Waite, Murat Ak, Rivka R Colen, Yae Won Park, Sung Soo Ahn, Jong Hee Chang, Yoon Seong Choi, Seung-Koo Lee, Gregory S Alexander, Ayesha S Ali, Adam P Dicker, Adam E Flanders, Spencer Liem, Joseph Lombardo, Wenyin Shi, Gaurav Shukla, Brent Griffith, Laila M Poisson, Lisa R Rogers, Aikaterini Kotrotsou, Thomas C Booth, Rajan Jain, Matthew Lee, Abhishek Mahajan, Arnab Chakravarti, Joshua D Palmer, Dominic DiCostanzo, Hassan Fathallah-Shaykh, Santiago Cepeda, Orazio Santo Santonocito, Anna Luisa Di Stefano, Benedikt Wiestler, Elias R Melhem, Graeme F Woodworth, Pallavi Tiwari, Pablo Valdes, Yuji Matsumoto, Yoshihiro Otani, Ryoji Imoto, Mariam Aboian, Shinichiro Koizumi, Kazuhiko Kurozumi, Toru Kawakatsu, Kimberley Alexander, Laveniya Satgunaseelan, Aaron M Rulseh, Stephen J Bagley, Michel Bilello, Zev A Binder, Steven Brem, Arati S Desai, Robert A Lustig, Eileen Maloney, Timothy Prior, Nduka Amankulor, Mac Lean P Nasrallah, Donald M O'Rourke, Suyash Mohan, Christos Davatzikos
{"title":"Machine Learning-based Prognostic Subgrouping of Glioblastoma: A Multi-center Study.","authors":"Hamed Akbari, Spyridon Bakas, Chiharu Sako, Anahita Fathi Kazerooni, Javier Villanueva-Meyer, Jose A Garcia, Elizabeth Mamourian, Fang Liu, Quy Cao, Russell T Shinohara, Ujjwal Baid, Alexander Getka, Sarthak Pati, Ashish Singh, Evan Calabrese, Susan Chang, Jeffrey Rudie, Aristeidis Sotiras, Pamela LaMontagne, Daniel S Marcus, Mikhail Milchenko, Arash Nazeri, Carmen Balana, Jaume Capellades, Josep Puig, Chaitra Badve, Jill S Barnholtz-Sloan, Andrew E Sloan, Vachan Vadmal, Kristin Waite, Murat Ak, Rivka R Colen, Yae Won Park, Sung Soo Ahn, Jong Hee Chang, Yoon Seong Choi, Seung-Koo Lee, Gregory S Alexander, Ayesha S Ali, Adam P Dicker, Adam E Flanders, Spencer Liem, Joseph Lombardo, Wenyin Shi, Gaurav Shukla, Brent Griffith, Laila M Poisson, Lisa R Rogers, Aikaterini Kotrotsou, Thomas C Booth, Rajan Jain, Matthew Lee, Abhishek Mahajan, Arnab Chakravarti, Joshua D Palmer, Dominic DiCostanzo, Hassan Fathallah-Shaykh, Santiago Cepeda, Orazio Santo Santonocito, Anna Luisa Di Stefano, Benedikt Wiestler, Elias R Melhem, Graeme F Woodworth, Pallavi Tiwari, Pablo Valdes, Yuji Matsumoto, Yoshihiro Otani, Ryoji Imoto, Mariam Aboian, Shinichiro Koizumi, Kazuhiko Kurozumi, Toru Kawakatsu, Kimberley Alexander, Laveniya Satgunaseelan, Aaron M Rulseh, Stephen J Bagley, Michel Bilello, Zev A Binder, Steven Brem, Arati S Desai, Robert A Lustig, Eileen Maloney, Timothy Prior, Nduka Amankulor, Mac Lean P Nasrallah, Donald M O'Rourke, Suyash Mohan, Christos Davatzikos","doi":"10.1093/neuonc/noae260","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.</p><p><strong>Methods: </strong>We developed a highly reproducible, personalized prognostication and clinical subgrouping system using machine learning (ML) on routine clinical data, MRI, and molecular measures from 2,838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).</p><p><strong>Results: </strong>The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95%CI: 1.43-1.84, p<0.001) and 3.48 (95%CI: 2.94-4.11, p<0.001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort.</p><p><strong>Conclusions: </strong>Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach for personalized patient management and clinical trial stratification in glioblastoma.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae260","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.

Methods: We developed a highly reproducible, personalized prognostication and clinical subgrouping system using machine learning (ML) on routine clinical data, MRI, and molecular measures from 2,838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).

Results: The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95%CI: 1.43-1.84, p<0.001) and 3.48 (95%CI: 2.94-4.11, p<0.001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort.

Conclusions: Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach for personalized patient management and clinical trial stratification in glioblastoma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信