Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Habeeb Yusuff, Pierre-Emmanuel Zorn, Céline Giraudeau, Benoît Wach, Philippe Choquet, Simon Chatelin, Jean-Philippe Dillenseger
{"title":"Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts.","authors":"Habeeb Yusuff, Pierre-Emmanuel Zorn, Céline Giraudeau, Benoît Wach, Philippe Choquet, Simon Chatelin, Jean-Philippe Dillenseger","doi":"10.1007/s10334-024-01217-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purposes: </strong>This research highlights the need for affordable phantoms for MRI education. Current options are either expensive or limited. A phantom, easy to manufacture and distribute, is proposed to demonstrate various pedagogical concepts, aiding students in understanding MRI image quality concepts.</p><p><strong>Methods: </strong>We designed a cylindrical MRI phantom that comprises sections that can be filled with chosen liquids and gels. The dimensions were chosen to fit most consumer-grade 3D printers, facilitating widespread dissemination. It includes five modular sections for evaluating spatial resolution, geometrical accuracy, slice thickness accuracy, homogeneity, and contrast.</p><p><strong>Results: </strong>The modular cylindrical MRI phantom was successfully fabricated. Each section of the phantom was tested to ensure it met the specified pedagogical needs. The spatial resolution section provided clear images for evaluating fine details. The geometrical accuracy section allowed for precise measurement of distortions. The slice thickness accuracy section confirmed the consistency of slice thickness across different MRI sequences. The homogeneity section demonstrated uniform signal distribution, and the contrast section effectively displayed varying contrast levels.</p><p><strong>Conclusions: </strong>This modular MRI phantom offers a cost-effective tool for educational purposes in MRI. Its design enables educators to demonstrate multiple pedagogical scenarios with a single object. The phantom's compatibility with consumer-grade 3D printers and its modularity makes it accessible and adaptable to various educational settings. Future work could explore further customization and enhancement of the phantom to cover additional educational needs. This tool represents a significant step toward improving MRI education and training by providing a practical, hands-on learning experience.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01217-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purposes: This research highlights the need for affordable phantoms for MRI education. Current options are either expensive or limited. A phantom, easy to manufacture and distribute, is proposed to demonstrate various pedagogical concepts, aiding students in understanding MRI image quality concepts.

Methods: We designed a cylindrical MRI phantom that comprises sections that can be filled with chosen liquids and gels. The dimensions were chosen to fit most consumer-grade 3D printers, facilitating widespread dissemination. It includes five modular sections for evaluating spatial resolution, geometrical accuracy, slice thickness accuracy, homogeneity, and contrast.

Results: The modular cylindrical MRI phantom was successfully fabricated. Each section of the phantom was tested to ensure it met the specified pedagogical needs. The spatial resolution section provided clear images for evaluating fine details. The geometrical accuracy section allowed for precise measurement of distortions. The slice thickness accuracy section confirmed the consistency of slice thickness across different MRI sequences. The homogeneity section demonstrated uniform signal distribution, and the contrast section effectively displayed varying contrast levels.

Conclusions: This modular MRI phantom offers a cost-effective tool for educational purposes in MRI. Its design enables educators to demonstrate multiple pedagogical scenarios with a single object. The phantom's compatibility with consumer-grade 3D printers and its modularity makes it accessible and adaptable to various educational settings. Future work could explore further customization and enhancement of the phantom to cover additional educational needs. This tool represents a significant step toward improving MRI education and training by providing a practical, hands-on learning experience.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信